了解结晶动力学

通过控制过饱和度优化晶体尺寸与形状

拨打电话询价
结晶开发指南
过饱和度分析
用于恒定过饱和度的非线性冷却速率
自动化过饱和度控制
用于工艺优化的颗粒粒径分析

应用

用于了解结晶动力学的应用

多晶型的识别与控制
了解多晶型和工艺参数的影响

多晶型是制药和精细化工行业中许多结晶固体存在的一种现象。 科学家们特意结晶出一种理想的多晶型物,以改善分离性能,帮助克服下游过程的挑战,并提高生物利用度或避免出现冲突。 原位、实时识别多态和形态变换,可消除意外过程扰动、产品不合格和成本高昂的物料再处理问题。

重结晶
优化晶体特性与过程性能

科研人员将高价值的化合物重结晶,从而以较高效率获得具有所需物性的晶体产品。 从选择正确的溶剂到获得干燥的晶体产品,设计理想的重结晶过程需要七个步骤。 本重结晶指南分步介绍了开发重结晶过程的流程。 其中解释了重结晶每个阶段所需的信息,并且阐述了控制关键过程参数的方法

Solubility and Metastable Zone Width (mzw) Determination
结晶的组成部分

溶解度曲线通常用于说明溶解度、温度和溶剂类型之间的关系。 通过绘制温度和溶解度之间的曲线,科学家可创建开发所需结晶过程需要的框架。 一旦选择了适当的溶剂,溶解度曲线便成为研发高效结晶过程的主要工具。

Crystal Nucleation and Growth
结晶成核与生长的驱动力

科学家和工程师们通过小心调节过饱和程度来控制结晶过程。 过饱和度是结晶成核与生长的驱动力,因此会决定较终的晶体尺寸分布。

Measure Crystal Size Distribution
通过在线测量颗粒粒径、形状与数量,改善结晶过程

基于探头的过程技术应用于跟踪全浓度下的颗粒粒径与形状变化,而无需稀释或提取。 通过实时跟踪颗粒和晶体的变化速率与变化程度,可优化结晶性能的工艺参数。

在结晶过程中加入晶种的方案
设计和优化晶种加入方案,以提高批次一致性

晶种加入是优化结晶行为的较重要工序之一。 在设计晶种加入策略时,必须考虑重要参数,如:晶种粒径、晶种加入量(质量)与晶种添加温度。 通常根据过程动力学以及所需较终颗粒物性对这些参数进行优化,这些参数在扩大生产与技术转移时必须保持一致。

结晶过程中的油析
检测并避免油析(液-液相分离)

结晶过程中出现的液-液相分离或油析通常是一种很难检测到的颗粒形成机理。了解更多信息。

滴加反溶剂实现过饱和度
添加溶剂如何控制晶体粒度与粒数

在反溶剂结晶过程中,溶剂添加速率、添加位置与混合会对容器或管道内的局部过饱和度产生影响。 科学家与工程师通过调整反溶剂添加方案与过饱和度更改晶体粒度与粒数。

温度会对结晶尺寸和形状产生影响
通过控制过饱和度优化晶体尺寸与形状

冷却曲线对过饱和度和结晶动力学产生重要影响。 工艺温度经过优化,与晶体表面相匹配,可实现优化生长而不是成核。 通过控制温度来调整过饱和度、晶体尺寸和形状的先进技术。

温度会对结晶尺寸和形状产生影响
扩大搅拌、加料和结晶

更改结晶器规模或混合条件会直接影响结晶过程的动力学和较终晶体尺寸。 传热和传质效应分别是冷却系统和反溶剂系统的重要考量因素,其中温度梯度或浓度梯度会形成实际过度饱和的不均匀性。

蛋白质结晶
让复杂的大分子形成结构化、有序的晶格

蛋白质结晶是将通常复杂的大分子形成结构化、有序晶格的行为和方法。

乳糖结晶
以高产和可扩展的工艺回收乳糖

乳糖结晶是一种通过控制结晶从乳清溶液中分离乳糖的工业做法。

批式结晶优化和过程设计
生成过饱和结晶并测定最终结晶产物

设计良好的批式结晶过程可以成功地按生产规模秤量--得到所需的晶体尺寸分布、产量、形态和纯度。 批式结晶的优化需要保持对结晶器温度(或溶剂成分)的充分控制。

连续结晶过程
建模与控制的实时监测

结晶过程建模和结晶器设计方面的进步使连续结晶成为可能,这些进步通过直接监测结晶数量来实时控制结晶粒度分布。

MSMPR crystallizer workstation
Improve Crystallization Experiments with Precise Control

The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.

多晶型的识别与控制

多晶型是制药和精细化工行业中许多结晶固体存在的一种现象。 科学家们特意结晶出一种理想的多晶型物,以改善分离性能,帮助克服下游过程的挑战,并提高生物利用度或避免出现冲突。 原位、实时识别多态和形态变换,可消除意外过程扰动、产品不合格和成本高昂的物料再处理问题。

重结晶

科研人员将高价值的化合物重结晶,从而以较高效率获得具有所需物性的晶体产品。 从选择正确的溶剂到获得干燥的晶体产品,设计理想的重结晶过程需要七个步骤。 本重结晶指南分步介绍了开发重结晶过程的流程。 其中解释了重结晶每个阶段所需的信息,并且阐述了控制关键过程参数的方法

Solubility and Metastable Zone Width (mzw) Determination

溶解度曲线通常用于说明溶解度、温度和溶剂类型之间的关系。 通过绘制温度和溶解度之间的曲线,科学家可创建开发所需结晶过程需要的框架。 一旦选择了适当的溶剂,溶解度曲线便成为研发高效结晶过程的主要工具。

Crystal Nucleation and Growth

科学家和工程师们通过小心调节过饱和程度来控制结晶过程。 过饱和度是结晶成核与生长的驱动力,因此会决定较终的晶体尺寸分布。

Measure Crystal Size Distribution

基于探头的过程技术应用于跟踪全浓度下的颗粒粒径与形状变化,而无需稀释或提取。 通过实时跟踪颗粒和晶体的变化速率与变化程度,可优化结晶性能的工艺参数。

在结晶过程中加入晶种的方案

晶种加入是优化结晶行为的较重要工序之一。 在设计晶种加入策略时,必须考虑重要参数,如:晶种粒径、晶种加入量(质量)与晶种添加温度。 通常根据过程动力学以及所需较终颗粒物性对这些参数进行优化,这些参数在扩大生产与技术转移时必须保持一致。

结晶过程中的油析

结晶过程中出现的液-液相分离或油析通常是一种很难检测到的颗粒形成机理。了解更多信息。

滴加反溶剂实现过饱和度

在反溶剂结晶过程中,溶剂添加速率、添加位置与混合会对容器或管道内的局部过饱和度产生影响。 科学家与工程师通过调整反溶剂添加方案与过饱和度更改晶体粒度与粒数。

温度会对结晶尺寸和形状产生影响

冷却曲线对过饱和度和结晶动力学产生重要影响。 工艺温度经过优化,与晶体表面相匹配,可实现优化生长而不是成核。 通过控制温度来调整过饱和度、晶体尺寸和形状的先进技术。

温度会对结晶尺寸和形状产生影响

更改结晶器规模或混合条件会直接影响结晶过程的动力学和较终晶体尺寸。 传热和传质效应分别是冷却系统和反溶剂系统的重要考量因素,其中温度梯度或浓度梯度会形成实际过度饱和的不均匀性。

蛋白质结晶

蛋白质结晶是将通常复杂的大分子形成结构化、有序晶格的行为和方法。

乳糖结晶

乳糖结晶是一种通过控制结晶从乳清溶液中分离乳糖的工业做法。

批式结晶优化和过程设计

设计良好的批式结晶过程可以成功地按生产规模秤量--得到所需的晶体尺寸分布、产量、形态和纯度。 批式结晶的优化需要保持对结晶器温度(或溶剂成分)的充分控制。

连续结晶过程

结晶过程建模和结晶器设计方面的进步使连续结晶成为可能,这些进步通过直接监测结晶数量来实时控制结晶粒度分布。

MSMPR crystallizer workstation

The MSMPR (Mixed Suspension Mixed Product Removal) crystallizer is a type of crystallizer used in industrial processes to produce high-purity crystals.

文档

关于结晶动力学的出版物

白皮书

通过原位显微镜了解结晶工艺过程
用于理解结晶过程的关键动态原理现在可由原位显微镜观察到。白皮书介绍了业内知名的化学公司是如何受益于这一替代了传统的离线显微镜的原位显微镜。
开发有效结晶工艺
结晶质量会明显影响较终产品的质量。 我们的新白皮书介绍结晶的基本原理,并提供关于高质量结晶工艺设计的指南。
优化晶粒度与尺寸分布策略
该白皮书探讨在过程开发和生产过程中优化晶体尺寸分布的策略。
改进工业结晶
工业结晶是化学、采矿和食品行业中重要的分离和净化步骤。 本白皮书介绍了如何使用在线颗粒技术来理解、优化和控制结晶以提高产品质量和产量。
在结晶工艺中加入晶种
晶种是优化结晶工艺的关键步骤之一,可确保过滤速率、产量、多晶型和颗粒粒径分布的一致性。配有反馈控制的先进晶种加入技术可帮助科学家获得较佳的晶种条件。
间歇结晶工艺的放大:从实验室至工厂
提供工艺的了解能够实时改进生产规模结晶过程的产量、生产能力和盈利情况 -通过提高过滤/干燥性能消除下游瓶颈问题 -促进对关键操作参数的表征提高生产率 -能够设计更加稳定的过程,确保批次的重现性和一致性以满足晶体规格的要求 -实时识别未预期的事件帮助确保产品的质量
结晶工艺开发的较佳实例
这个白皮书演示了化学家的方法用于优化关键结晶参数的方法如: 温度曲线加料速率 投入晶种以提高纯度、过滤速率以及批次重复性 
颗粒表征——从小型实验室级反应器到大规模生产线反应釜
本白皮书探讨了粒度分析问题,并将传统的线下方法与最新的在线技术进行了对比。在线方法允许实时进行过程调整和优化。

网上技术交流讲座

连续流动化学
来自于 Snapdragon 的 Eric Fang 对连续流动化学在整条价值链的适用性进行了讨论。 在药物研发阶段及早地实施连续流动化学可产生较高价值。
利用细颗粒结晶消除微粉化现象
当结晶粒度分布过大,无法满足下游规格要求时,就会应用结晶工程。通过设计结晶以在原位生产细小晶体分布,可避免下游研磨操作,从而提高产量并减少因研磨而可能产生的能耗或安全隐患。本网络研讨会回顾了如何设计可扩展的结晶过程、生产细小晶体并消除研磨需求。
“无”标定的过饱和度的评估与控制 - 针对结晶工艺的开发与优化
用原位ATR-FTIR 进行定量的实时过饱和度评估已有非常好的文献描述。然而,由于受时间和标定/统计分析的限制,这些现在已有良好结构和理解的方法还没有被结合到标准的药物结晶过程开发中。 这一网络研讨会将介绍一个“无需”标定的使用原位ATR-FTIR光谱分析来建立和控制定性的过饱和度途径。
可迁移带宽度(MSZW)结晶
网络研讨会的重点是流体力学限制的反溶剂结晶过程优化和放大的半定量方法。 该方案将原位过程分析技术(PAT)与计算流体动力学(CFD)相结合,便于为这种混合受限结晶过程制作基于知识的放大策略。
改善结晶和沉淀
本网络研讨会将介绍案例研究,并重点介绍用于克服结晶和沉淀难题的最佳实践。重点将放在过去 20 年来在结晶优化领域发表的科学期刊论文和会议发言上。这些重要的研究成果涉及多个工业领域,将被提炼总结,为理解和优化具有挑战性的结晶和沉淀单元操作提供有用的指导。

相关产品

用于结晶动力学的技术

Ion Selective Electrode Guide – Theory and Practice
想不想让市场领头羊来维护您的天平?
Evaluation of Measurement Uncertainty in Titration Webinar
Thermal Analysis Applications for the Characterization of Food
21 CFR Part 11 Compliant Instruments
Food and beverages applications collection
Differential Scanning Calorimetry (DSC) Webinar
The Characterization of Pharmaceuticals Using Thermal Analysis
Good Titration Practice™ Polyols and Polymers Webinar
Automated Performance Verification – Advances in UV VIS Spectroscopy
Wine Analysis Made Easy - Ready-to-use titration wine applications
Metals Titration in the Mining Industry Webinar
Thermal Analysis Techniques for the Chemical Industry – Theory and Applications
Thermal Analysis Applications for the Petrochemical Industry
Heat capacity determination of metals above 700 °C
How to Measure pH in Small Samples
Smart BRIX Standard Preparation - For Calibration of Refractometers