EasyMax 102

Personal Synthesis Workstation

User Manual

Table of Contents

1	Intro	luction	3
	1.1	Scope of delivery	З
	1.2	Check on arrival	4
2	Safet	y Information	5
	2.1	Definition of signal warnings and symbols	5
	2.2	Intended use	5
	2.3	Product-specific safety	5
3	Over	/iew	8
4	Insta	llation	9
	4.1	Installation requirements	9
	4.2	Unpacking and transporting device	9
	4.3	Connecting power to the device	9
	4.4	Connecting a flowmeter	9
	4.5	Installing instrument cooling	10
		4.5.1 Connecting in-house coolant supply	11
		4.5.2 Connecting cryostat cooling	11
	4.6	Connecting instrument purge	11
	4.7	Connecting touchscreen to EasyMax	12
	4.8	Assembling the stirrer	12
	4.9	Installing a Tr sensor	13
	4.10	Installing a two-piece 100 mL reactor	13
	4.11	Turn on Device	14
5	Oper	ation	15
	5.1	Select Reactor Type	15
	5.2	Change safety settings	15
		5.2.1 Change safety temperature (T safe)	16
		5.2.2 Change reaction temperature limits (Tr)	16
		5.2.3 Change range of jacket temperature (Tj)	16
		5.2.4 Change T diff max	17
		5.2.5 Change Rsafe	17
		5.2.6 Change Rmax	17
	5.3	Start an experiment	18
	5.4	Change stirrer speed	18
	5.5	Change Ti	18
	5.6	Change Tr.	18
	5.7	End an experiment	19
6	Main	tenance	20
	6.1	Update Firmware	20
	6.2	Checking the Reactor	20
	6.3	Cleaning the Instrument	20
	6.4	Disposal	20
7	Techi	nical Data	21
	7.1	Thermostat	23
	7.2	Reactors	23
	7.3	Stirrer	24
	7.4	Cooling	24
	75	Purge gas	24
			- '

1 Introduction

The METTLER TOLEDO EasyMax[™] 102 is an easy-to-use personal synthesis workstation that allows you to run two reactions simultaneously in an accurate and reproducible way.

The main features of the EasyMax 102 are:

- Two independently controlled reactor zones
- Different volumes of reaction vessels: 100 mL and 50 mL reactors or vials for 25 mL, 10 mL and 8 mL
- Overhead and magnetic stirring
- No oil or ice baths
- Minimize the size of your cryostat
- Easy touchscreen control
- Full compatibility with selected METTLER TOLEDO devices, including the DU SP-50, ECB, EasySampler and the SevenExcellence pH meter
- You can export the acquired data to another program for further processing.
- A Pt100 sensor measures the temperature of the reactor content for monitoring, temperature control and data capture.

Please also read the Operating Instructions for the full scope of functionalities of the device. The Operating Instructions can be found on the USB stick.

1.1 Scope of delivery

The following items are included in the EasyMax 102 Basic and EasyMax 102 Advanced thermostat set:

Order number		Description	Quantity
		EasyMax 102 thermostat	1
51161883		TFT touchscreen 7", 1 m cable	1
11132570		Protective cover for touchscreen	1
51191125		PVC hose, soft, for reflux condenser, 5 m	1
51161187		PVC industrial hose for coolant, 15 bar, 2.5 m	2
51192239		PVC industrial hose for purge gas, 18 bar, 2 m	1
51161186	Q	PVC hose for purge gas, 2 m	2

51191373	Y-piece for gas tubing	2
51191916	Reducing connector for purge gas tubing	1
51161827	Flowmeter set	1
51190324	Quick connect coupling for purge gas inlet	3
51192126	Hose clamp for PVC tube	8
51191915	Flow indicator for coolant]
51191914	Knurled screw, M6 x 10 (already mounted)	3
	USB Stick RXE/CSS with documents	1
	User Manual	1

Additional items shipped with EasyMax 102 Advanced

iControl software CD package	1
iControl Office License (license sheet only)	1

If an item is missing, please contact your local support team.

1.2 Check on arrival

Check the following conditions once the package has arrived:

- The package is in good condition.
- The contents show no signs of damage (e.g. broken covers, scratches, etc.)
- The content is complete (see [Scope of delivery Page 3]).

If any one of these condition is not fulfilled, please contact your local support team.

2 Safety Information

This thermostat has been tested for the intended purposes described in this document. However, this does not absolve you from the responsibility of performing your own tests of the product supplied by us regarding its suitability for the methods and purposes you intend to use it for. You should therefore observe the following safety measures.

We, Mettler-Toledo GmbH, accept no liability whatsoever if you do not observe the following rules and safety notes for safe operation of the thermostat.

2.1 Definition of signal warnings and symbols

Safety notes are indicated by signal words and warning symbols and contain warnings and information about safety issues. Ignoring safety notes can lead to personal injury, damage to the instrument, malfunctions and erroneous results.

- **WARNING** A hazardous situation with medium risk, possibly resulting in death or severe injury if not avoided.
- **CAUTION** A hazardous situation with low risk, resulting in minor or moderate injury if not avoided.

NOTICE A hazardous situation with low risk, resulting in damage to the instrument, other material damage, malfunctions and erroneous results, or loss of data.

Note (no symbol) for useful information about the product.

Meaning of safety symbols

4	Electrical Hazard	Explosion	<u>sss</u>	Burns / Hot Surface
	Rotating parts	General note		

2.2 Intended use

The METTLER TOLEDO EasyMax 102 is a reactor system for performing parallel synthesis, with 8 mL, 10 mL, 25 mL, 50 mL and 100 mL glass reactors and 100 mL pressure reactors.

The device is designed to be used in a laboratory environment and operated in a fume hood. All users should be trained to work in a laboratory and with this device.

Always operate and use your device in accordance with the instructions contained in this manual; use it only together with equipment specified in this documentation.

Any other type of use and operation beyond the limits of these technical specifications without the written consent from Mettler-Toledo GmbH is considered as not intended.

2.3 Product-specific safety

🗥 WARNING

Risk of electric shock

- 1 Make sure to plug the power cable supplied into a power supply outlet that is grounded. A technical fault could otherwise result in serious injury or death.
- 2 Only use the METTLER TOLEDO power supply cable and AC power adapter designed for your instrument.

🗥 WARNING

Power failure

- A power failure can lead to explosion with possibly fatal consequences.
- Implement appropriate measures like an uninterruptible power supply (UPS).

MARNING

Risk of explosion with critical reactions

Performing critical reactions could lead to explosions.

 Perform a safety analysis before starting an experiment with high hazardous potential for example by using a Differential Scanning Calorimeter.

\land WARNING

Risk of explosion due to damaged reactors

Explosion of a reactor could cause serious injury.

- Check the reactor before each use for damage (scratches, formation of cracks).

A CAUTION

Hot parts when working above 50 $^\circ\text{C}$

Touching hot parts can cause burns.

 Do not touch the cover plate of the device, the fixing ring, the reactor covers, attachments of the reactor or the overhead stirrer if you work above 50 °C.

Rotating parts of stirrer

Rotating parts of a running stirrer may lead to injuries.

- 1 Do not touch rotating parts of a stirrer.
- 2 Do not wear loose clothing and make sure jewellery and long hair do not get entangled in the stirrer.

NOTICE

Wrong coolant used

High chloride concentration or some additives in the coolant can lead to corrosion of the thermostat.

- 1 Do not use solutions of NaCl, CaCl₂ or DW-Therm.
- 2 Check compatibility with the wetted parts of the coolant system.

NOTICE

Wrong connection or disconnection of cables

A wrong connection or disconnection of cables during operation could lead to instrument damage.

- 1 Before switching the device on, connect the cables of stirrers and sensors to their respective inputs and outputs.
- 2 Do not disconnect the cables while the instrument is operating.

NOTICE

Condensation of atmospheric moisture

The condensation of atmospheric moisture can cause corrosion of the instrument.

- 1 Always purge the instrument when it is in use. This removes any condensation that has formed.
- 2 Purge it with dry air, nitrogen or argon.

NOTICE

Reactor breaking due to freezing

The reactor can break or get stuck in the reactor zone of the thermostat when atmospheric moisture or any liquids freeze on the outside of the reactor or in the reactor zone of the thermostat.

- 1 Make sure the reactor zone of the thermostat and the reactor itself are clean and dry before inserting.
- 2 Make sure that when cooling below 0 °C, there is enough purge to minimize condensation.

($\overline{\ }$

NOTICE

Thermal shock

Glass parts of the instrument or the reactor could get damaged.

- Do not pour cold liquids into hot glassware and vice versa.

NOTICE

Risk of reactor breakage when sealed hermetically

Hermetical sealing could lead to pressure build-up when using gas or when the reactor is heated.

- Make sure venting is always possible.

3 Overview

Front view

-	coupling)	-	
3	Tr sensor socket	4	Holder for lab bars
5	Power button	6	USB Socket
7	Window (with backlight)	8	Opening for reactors

Rear view

1	Touchscreen connection	2	Coolant out
3	Purge in connection	4	Ethernet connection
5	Power supply	6	Coolant in
7	RS232	8	CAN out

4 Installation

4.1 Installation requirements

- The device should be installed in a fume hood.
- Make sure there is enough space (about 10 cm) between the ventilation slots at the back side of the instrument and any other object or the wall.
- Make sure you install the device in accordance with the technical data.

Site requirements

The instrument has been developed for indoor operation in a well-ventilated area. Avoid the following environmental influences:

- · Conditions outside of the ambient conditions specified in the technical data
- Powerful vibrations
- Direct sunlight
- Corrosive gas atmosphere
- Explosive atmosphere of gases, steam, fog, dust and flammable dust
- Powerful electric or magnetic fields

4.2 Unpacking and transporting device

Unpack the device

- 1 Grip the device under the base plate.
- 2 Lift the device up and out of the foam packing material.
- 3 Place the device on the lab bench.

Transport the device

- 1 Unplug the power adapter.
- 2 Disconnect the device properly from the cooling media.
- 3 Grip the device under the base plate.

4.3 Connecting power to the device

Risk of electric shock

- 1 Make sure to plug the power cable supplied into a power supply outlet that is grounded. A technical fault could otherwise result in serious injury or death.
- 2 Only use the METTLER TOLEDO power supply cable and AC power adapter designed for your instrument.
- 1 The power supply connection is on the back side of the device.
- Connect the instrument to the power supply using the included country-specific cable.
- 3 Insert the plug of the power cable in a grounded power outlet that is easily accessible.

4.4 Connecting a flowmeter

NOTICE

Damage of Flowmeter

The flowmeter is not resistant to any liquids other than water! Do not use it with other coolants.

- 1 Screw the flowmeter with the knurled screw onto the metal holder.
- 2 Insert the holder into the space between the lab bar holders.
- 3 Slide the lab bar through the lab bar holes and the holes of the metal holder.
- 4 Tighten the screw on the lab bar holder to fasten the lab bar.

4.5 Installing instrument cooling

There are two possibilities to cool the instrument:

- Connect to in-house coolant supply
- Connect to cryostat

NOTICE

Damage of Flowmeter

The flowmeter is not resistant to any liquids other than water! Do not use it with other coolants.

NOTICE

Wrong coolant used

High chloride concentration or some additives in the coolant can lead to corrosion of the thermostat.

- 1 Do not use solutions of NaCl, CaCl₂ or DW-Therm.
- 2 Check compatibility with the wetted parts of the coolant system.

4.5.1 Connecting in-house coolant supply

The instrument needs a constant flow of the cooling medium.

The instrument is delivered with two PVC industrial tubes. If you use the flowmeter, you need a third piece which can be cut away from one of the delivered tubes.

- 1 Push one piece of the PVC industrial hose (51161187) over the cooling inlet of the coolant flowmeter.
- 2 Secure it with a hose clamp.
- 3 Connect it to the coolant supply.
- 4 Push the cut piece of the PVC tube over the outlet of the coolant flowmeter.
- 5 Connect the other end to the elbow coupling of the **Cooling In** on the back side of the instrument.
- 6 Secure both connections with a hose clamp.
- 7 Push the other PVC tube over the elbow coupling of the Cooling Out on the back side of the instrument.
- 8 Secure it with a hose clamp.
- 9 Connect it to the cooling outlet of the fume hood.

NOTICE

4.5.2 Connecting cryostat cooling

Damage of Flowmeter

The flowmeter is not resistant to any liquids other than water! Do not use it with other coolants.

Do not use the flowmeter with the cryostat in order to have full capacity.

The instrument needs a constant flow of the cooling medium.

- 1 Screw the insulated connection tube over the **Cooling In** on the back of the instrument.
- 2 Use a wrench to tighten the connection to the instrument.
- 3 Screw the second insulated connection tube over the **Cooling Out** on the back of the instrument.
- 4 Use a wrench to tighten the connection to the instrument.

4.6 Connecting instrument purge

NOTICE

Condensation of atmospheric moisture

The condensation of atmospheric moisture can cause corrosion of the instrument.

- 1 Always purge the instrument when it is in use. This removes any condensation that has formed.
- 2 Purge it with dry air, nitrogen or argon.

To prevent corrosion by condensed atmospheric moisture, purge the instrument with a dry gas, e.g. dry air (dew point -70 °C), dry nitrogen or dry argon.

- 1 Install the quick connect coupling (51190324) with the PVC tubing (51161186) on the purge gas inlet connector.
- 2 Secure it with a hose clamp.
- 3 Connect the PVC tubing to the gas supply.

4.7 Connecting touchscreen to EasyMax

- 1 The touchscreen connection is on the back side of the instrument (see picture).
- 2 Connect the touchscreen cable to the socket.
- 3 Position the touchscreen so that it is always readable.

4.8 Assembling the stirrer

The overhead stirrer consists of the stirrer motor and a stirrer shaft that can be equipped with several stirrer elements (see Synthesis Workstation Catalog).

1 Screw the pitched-blade element (7) onto the stirrer shaft (6).

- 2 Push the stirrer shaft (**6**) or the glass stirrer from below through the opening of the reactor cover.
- 3 Push the adapter (5) with the height adjustment unit(4) over the stirrer shaft and insert it into the tapered opening of the cover.
- 4 Place the PA washer (3) over the stirrer shaft onto the adjustment unit (4).
- 5 Push the lower coupling (2) onto the stirrer shaft.
- 6 Push the stirrer motor (1) over the adjustment unit (4) in such a way that it snaps into its three pins.
- 7 Check that the stirrer blade does not touch any inserts.
- 8 Secure the adapter on the reactor with a Keck clamp.

4.9 Installing a Tr sensor

- 1 Slide a UNF 1/4" G 28 nut (3) over the sensor (4).
- 2 Slide a UNF 1/4" G 28 ferrule (2) over the sensor with the narrow end facing the nut.
- 3 Screw the nut lightly into the adapter (1) to press the ferrule into the nut.
- 4 Check that the Tr sensors does not touch the stirrer blades or other inserts.

Note Make sure the temperature sensor shows a sufficient immersion depth.

4.10 Installing a two-piece 100 mL reactor

1 Push the glass stirrer or the stirrer shaft with anchor or pitched-blade element through the central opening of the reactor cover before you place the cover onto the reactor.

- 2 Connect the stirrer shaft to the stirrer motor.
- 3 Place the reactor in the reactor holder.
- 4 Place the O-Ring on the cover rim and place the cover on the reactor.
- 5 Place the clamp chain carefully around the cover and the reactor flanges.
- 6 Screw the hook in or out so that the buckle can be easily closed (with one finger).

4.11 Turn on Device

- Power is connected.
- Cooling is connected and running.
- Purging of instrument is connected and running.
- Touchscreen is connected
- Press the ON/OFF button on the front side of the instrument.
 - → You should hear an audible click and the LED illuminates.
 - ➡ The touchscreen shows a splash screen during start up phase.
- → You can use the device as soon as the mainscreen appears.

5 Operation

All operations can be changed individually for reactor zone 1 or 2.

5.1 Select Reactor Type

- 1 Tap the button Reactor 100 mL.
- 2 Tap the **Reactor type** field.

 Make sure the safety settings for the reactor are still within the range.

FasyMax 102 Advanced 5/10/20			019 7:55 AM
Info	Reactor 1 Reactor Settings		je
₿ '	Reactor type	100 mL	2
↓ ×	Safety	>	× Å
\$,			, @
÷			

5.2 Change safety settings

- 1 Tap the Reactor button.
- 2 Tap on the **Safety** field.
- 3 Change the necessary parameters according to your experiment and setup.

Reactor 100 mL

FasyMax 102 Advanced 5/10/2			019 7:55 AM
Info	Reactor 1 Reactor Settings		je
₿ '	Reactor type	100 mL	2 🗒
↓ ×	Safety	>	××
\$ ~			~ @
÷			

5.2.1 Change safety temperature (T safe)

1 Tap on **T safe**.

- 2 Enter a value for **T safe** that is valid for your experiment.
- 3 Tap **OK**.

FasyMax 10	2 Advanced	5/10/2	019 3:57 PM
Info	Reactor 1 Safety		To
₿ '	Tr min -43.0 °C	Tr max 183.0 °C	² ₿
ds ⊥ x	Tj min -43.0 °C	Tj max 183.0 °C	×
@ ~	T safe 20.0 °C	T diff max 60.0 K	, P
	R safe 1000 rpm	R max 1000 rpm	
÷			

5.2.2 Change reaction temperature limits (Tr)

- 1 Tap on **Tr max** or / and **Tr min**.
- 2 Enter a value for **Tr max** and **Tr min** that is valid for your experiment.
- 3 Tap **OK**.

FasyMax 10 Info	2 Advanced Reactor 1 Safety	5/10/3	019 3:57 PM
⊕ '	Tr min -43.0 °C	Tr max 183.0 °C	2 🗒
4 x	Tj min -43.0 °C	Tj max 183.0 °C	× do
₽ ,	T safe 20.0 °C	T diff max 60.0 K	~ ®
	R safe 1000 rpm	R max 1000 rpm	
÷			

5.2.3 Change range of jacket temperature (Tj)

- 1 Tap on **Tj min** or / and **Tj max**.
- 2 Enter a value for **Tj min** and **Tj max** that is valid for your experiment.
- 3 Tap **OK**.

5.2.4 Change T diff max

1 Tap on **T diff max**.

- 2 Enter a value for **T diff max** that is valid for your experiment.
- 3 Tap **OK**.

FasyMax 10	12 Advanced	5/10/2	019 3:57 PM
	Safety		Ĩo
₿ '	Tr min -43.0 °C	Tr max 183.0 °C	2 🗒
4 ×	Tj min -43.0 °C	Tj max 183.0 °C	× do
@ ,	T safe 20.0 °C	T diff max 60.0 K	, @
	R safe 1000 rpm	R max 1000 rpm	
÷			

FasyMax 102 Advanced 5/13/201			19 10:54 AM			
Info	Reactor 1 Enter T diff	f max temp	erature			To
⊟ '	60.0 K					² ₿
	1	2	3	X	× do	
Q	Max: 60.0 K	4	5	6		6
₩ ~	7	8	9		✓ ₩	
		+/-	0			
÷				ок	Cancel	

	•
1	Tap on Rsafe .

5.2.5 Change Rsafe

- 2 Enter a value for **Rsafe** that is valid for your experiment.
- 3 Tap **OK**.

FasyMax 10	2 Advanced	5/10/2	019 3:57 PM
Info	Reactor 1 Safety		ĩo
₿ '	Tr min -43.0 °C	Tr max 183.0 °C	2 🗒
r r	Tj min -43.0 °C	Tj max 183.0 °C	× do
\$,	T safe 20.0 °C	T diff max 60.0 K	× 🖗
	R safe 1000 rpm	R max 1000 rpm	
÷			

5.2.6 Change Rmax

If you use any glass stirrer or metal anchor stirrer blade, please ensure that the Rmax is reduced to 500 rpm.

- 1 Tap on **Rmax**.
- 2 Enter a value for **Rmax** that is valid for your experiments.
- 3 Tap **OK**.

5.3 Start an experiment

- 1 Tap the experiment button on the main screen.
- 2 Enter an experiment name.
- 3 Tap Start to start the experiment.
- All tasks that are executed will be saved under the experiment and available for export.

FasyMax 10	2 Advanced	5/10/2	019 7:52 AM
	New experim	Reactor 2 New experim	Yo
₿ '	Tr 25.3 °C Reactor temperature	Tr 25.3 °C Reactor temperature	² ₿
d ×	Tr - Tj 0.4 K Distill / Reflux	Tr - Tj 0.4 K Distill / Reflux	x do
₽ ,	Tj 24.9 °C Jacket temperature	Tj 24.9 °C Jacket temperature	- @
	R 0 rpm Overhead stirring	R 0 rpm	
÷	Reactor 100 ml	Reactor 100 ml	

5.4 Change stirrer speed

Note The value cannot be higher than the safety limit value.

- A stirrer is connected.
- 1 Tap on the R field.
- 2 Enter the desired value.
- 3 Tap Start.
- ➡ The stirrer will immediately start stirring.

5.5 Change Tj

Note The value cannot be higher than the safety limit value.

- 1 Tap the **Tj** value field on the main screen.
- 2 Enter the end temperature for Tj.
- 3 Tap Start to initiate the task.
- ➡ The task will start immediately.

FasyMax 102 Advanced 5/10/2019 2:47 PM					019 2:47 PM	
Info	Reactor 1 C2H4C	02				To
₿'	Tr Reactor	2 temperatur	5.3 °C	Dose / C	harge	2 🗒
do x x	Tr - T Distill / I	Fj Reflux	0.4 K	Sample EasySampler re	eady	×
₽ ,	Tj Jacket te	2 [.] emperature	4.9 °C	р <mark>Н</mark>	7.00	, P
() 00:00:00	R Overhea	d stirring	0 rpm			
÷	Notes	Graph	Experime & Export	Task Sequence	Reactor 100 ml	

5.6 Change Tr

Note The value cannot be higher than the safety limit value.

- A Tr sensor is connected to the thermostat.
- 1 Tap the **Tr** value field on the main screen.
- 2 Enter the end temperature for Tr.
- 3 Tap Start to initiate the task.

FasyMax 10	7 Advanced				5/10/2	019 2:47 PM
Info	Reactor 1 C2H4C	02				To
₿'	Tr Reactor	2 temperatur	5.3 °C °	Dose / C	harge	2 🗒
4 ×	Tr - T Distill / I	Fj Reflux	0.4 K	Sample EasySampler re	ady	× ×
\$ v	Tj Jacket te	2· emperature	4.9 °C	р <mark>Н</mark>	7.00	, ®
() 00:00:00	R Overhea	d stirring	0 rpm			
÷	Notes	Graph	Experime & Export	Task Sequence	Reactor 100 ml	

5.7 End an experiment

1 Tap on the Stop button on the mainscreen.

- 2 Select your preferred option for experiment end conditions.
- 3 Tap **OK**.
- Your experiment is stored on the device and can be exported.

6 Maintenance

Maintenance tasks have to be performed in accordance with the instructions given in this chapter. After performing any maintenance tasks, it should be ensured that the device still meets all safety requirements.

6.1 Update Firmware

The latest firmware versions and instructions for installation are available on the following website: https://community.autochem.mt.com/?q=software

6.2 Checking the Reactor

To check the reactor vessel for possible damage (scratches and cracks), it must be empty, clean, dry and open. Small hairline cracks can be detected by refraction using an additional light source (focused, not dispersed light).

6.3 Cleaning the Instrument

Hot instrument parts

Touching hot parts of the instrument can result in burnings.

- Do not clean the instrument before all parts have reached room temperature.

NOTICE

Damage to the device due to incompatible cleaning agents

Inappropriate cleaning agents could damage the housing of the device.

- 1 Use the described cleaning agent.
- 2 Should you use other cleaning agents, ensure that they are compatible with the housing material.

The housing of the instrument is not watertight (i.e. splash proof). We therefore recommend that you clean it with a damp cloth using ethanol.

If you have questions about the compatibility of cleaning agents, contact your authorized METTLER TOLEDO dealer or service representative.

6.4 Disposal

In conformance with the European Directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE) this device may not be disposed of in domestic waste. This also applies to countries outside the EU, per their specific requirements.

Please dispose of this product in accordance with local regulations at the collecting point specified for electrical and electronic equipment. If you have any questions, please contact the responsible authority or the distributor from which you purchased this device. Should this device be passed on to other parties, the content of this regulation must also be related.

7 Technical Data

Certifications regarding this product can be found at https://www.mt.com/us/en/home/search/compliance.html/ The product name of your device is the model number.

Directives, standards and REACH regulation

SVHC candidate substances according to REACH (Article 33)

Material	CAS No.
Decamethylcyclopentasiloxane	541-02-6
Dodecamethylcyclohexasiloxane	540-97-6
Octamethylcyclotetrasiloxane	556-67-2

United States of America

This equipment has been tested and found to comply with the limits for a **Class B** digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Power supply

AC Power Adapter rating	Voltages	100 - 240 VAC
	Frequency	50 Hz / 60 Hz
	Permissible voltage fluctuation	±15%
Instrument rating	Power Consumption	Max. 1000 VA

Connections

USB	Support of USB 2.0
Electrical connectors	RS232, USB, CAN, Ethernet and touchscreen
Cable length	Limited to 3 m for RS232, USB, CAN

Ambient Conditions

Humidity	Max. relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C
Altitude	Up to 2000 m
Overvoltage category	П
Pollution degree	2
Ambient temperature	5 °C40 °C
Usage	For indoor use only

Materials

Cover plate	Stainless steel coated with PFA/FEP		
Housing material	Powder-Coated stainless steel		
Connectors for purge gas	Stainless steel, nickel-plated brass		
Purge gas lines	PVC, FEP, PP, PVDF, PTFE, aluminum		

Coolant system (wetted parts)	PVC, PTFE, PVDF, copper	
Cooling connector	Nickel-plated brass	
Holder for lab bars	Aluminium	
LEMO connectors for Tr sensor and overhead stirrer	Chrome-plated brass with protection cap in PSU	
Reactor window	Borosilicate glass 3.3	
Receptacles for reactors	Anodized aluminum	
Fixing rings of thermostats	PTFE C25	
USB connector	Stainless steel with protection cap in PSU	
On/Off switch	Stainless steel	
Reactors	Borosilicate glass 3.3 and PTFE	
Magnetic stirrer	PTFE coated	
Overhead stirrer shaft	Borosilicate glass 3.3, Alloy 22 or PTFE	
Touchscreen	PA 12, aluminum	
Protective cover for Touchscreen	Barex®	

Device

Weight incl. Touchscreen	16 kg
Backlight	2 LED per reactor

Dimensions

7.1 Thermostat

Power

Heating	360 W per thermostat
Cooling	Max. 150 W per thermostat

Temperatures

Range	Tj: - 40 °C (with Tc < -15 °C) to 180 °C
	Tr: - 40 °C (with Tc < -15 °C) to 180 °C*
	Tc: - 40 °C to 60 °C
	* The maximum and minimum Tr depends on heat transfer through the jacket and heat generated by the reaction.
Resolution	Тј: 0.1 К
	Tr: 0.1 K
Maximum permissible errors	± 1.0 K for the whole range, for Tr and Tj sensor
Data recording interval	Every 2 seconds

7.2 Reactors

Volumes	100 mL
	50 mL
	25 mL
	10 mL
	8 mL
Pressure	0.05 bar to ambient pressure

Cover for reactors

50 mL glass cover	• 1 x ST7/16
	• 2 x ST10/19
	• 2 x GL14
	1x ST14/23: Central port for stirrer
100 mL glass cover	• 2 x ST10/19
	• 3 x ST14/23
	 1x ST14/23: Central port for stirrer

100 mL PTFE cover	•	1 x ST10/19
	•	3 x ST14/23
		 1x ST14/23: Central port for stirrer
	•	2 x ST19/26
100 mL PTFE 19 mm	•	1 x ST10/19
cover	•	2 x ST14/23
	•	1 x 1/2″ NPT
	•	1 x 19.25 mm
	•	1 x ST14 with 3/8" NPT: Central port for stirrer

7.3 Stirrer

Overhead stirrer

Operating mode	Control to constant value or ramp		
Data recording interval	Every 2 seconds		
Speed range	50 to 1000 rpm		
Magnetic stirrer			
Speed range	50 to 1000 rpm		

7.4 Cooling

Cooling medium	 Water (unpolluted); otherwise install a filter Ethylene glycol Silicone oil 		
	Other cooling media have to be compatible with the wetted materials of the cooling system [Technical Data Page 21]		
Min. flow of cooling media	2 L/min		
Cooling types	In-house coolant supply or cryostat		
Max. pressure of cooling media	Without flowmeter: 3.5 barWith flowmeter: 2 bar		
Temperature (Tj)	In-house coolant supply	Cooling power of cryostat	
> - 10 °C	At 15 °C	1000 W at 20 °C	
- 40 °C	Not possible	Min. 450 W at -10 °C	

7.5 Purge gas

Max. inlet pressure	7 bar	
Min gas flow	Instrument purge: 3 L/min [Connecting instrument purge Page 11]	
	Reactor purge: as required by experiment	

To protect your product's future:

METTLER TOLEDO Service assures the quality, measuring accuracy and preservation of value of this product for years to come.

Please request full details about our attractive terms of service.

www.mt.com

For more information

Mettler-Toledo GmbH Im Langacher 44 8606 Greifensee, Switzerland www.mt.com/contact

Subject to technical changes. © Mettler-Toledo GmbH 11/2020 30111281C

