INGOLD Leading Process Analytics

Mode d'emploi

Manuel d'instruction Transmetteur multiparamètre M800

Contenu

Consi	gnes de s	écurité
2.1	Définitio	n des symboles et désignations présents sur l'équipement et dans la documentation
2.2	Mise au	rebut adéquate de l'instrument
Dráco	ntation d	
2 1		
3.1		Iseliule Madile è l'usie
	3.1.1	
<u> </u>	3. I.Z	
3.Z	Amenag	
	3.2.1	
<u></u>	J.Z.Z	
3.3		de mesule
	3.3.1	Ouvin la lenere du graphique
	3.3.Z	Paranelies à amérique au graphique
2 4	3.3.3	
3.4		
	3.4.1	
	3.4.2	Commandes
	3.4.3	Salsie des donnees
	3.4.4	Menus de Selection
	J.4.5	Bolie de alalogue « Save changes »
	3.4.6	Mors de passe
	3.4.7	ECTON
Instru	ctions d'i	nstallation
4.1	Déballa	ge et contrôle de l'équipement
4.2	Montag	e des modèles 1/2 DIN (boîtier en PC)
	4.2.1	Dimensions du modèle 1/2 DIN (boîtier en PC)
	4.2.2	Procédure de montage – modèle 1/2 DIN
		(boîtier en PC)
	4.2.3	Nodèle 1/2 DIN (boîtier en PC) – montage sur panneau
	4.2.4	Modèle 1/2 DIN – montage mural
	4.2.5	Modèle 1/2 DIN (boîtier en PC) – montage sur conduite
4.3	Montag	e du modèle en acier inoxydable
	4.3.1	Dimensions du modèle en acier inoxydable
	4.3.2	Procédure de montage – modèle en acier inoxydable
	4.3.3	Modèle en acier inoxydable – montage mural
	4.3.4	Modèle en acier inoxydable – montage sur conduite
4.4	Raccord	lement électrique
4.5	Définitio	n du terminal
	4.5.1	M800 monovoje
		4.5.1.1 Sonde de turbidité InPro 8000
	4.5.2	M800 2 voies
	4.5.3	M800 4 voies
	4.5.4	M800 1 voie : TB2 – Sondes analogiques de conductivité 2e/4e
	4.5.5	M800 1 voie : TB2 – Électrodes analogiques pour le pH/redox
	4.5.6	M800 1 voie : TB2 – Sondes analogiques à oxygène
	4.5.7	M800 2 et 4 voies : TB2 et TB4 – Affectation des terminaux pour les sondes ISM d'oxvaène optique.
		de CO ₂ hi, UniCond2e, UniCond4e et 5000TOCi
	4.5.8	M800 2 et 4 voies : TB2 et TB4 – Affectation des terminaux pour les sondes ISM d'ozone, de CO
		d'oxyaène ampérométriques, de conductivité à 4 électrodes et les électrodes de pH
	4.5.9	M800 1 voie : TB3 – Affectation des terminaux pour les sondes ISM d'oxygène optique, de CO ₂ hi
		UniCond2e et UniCond4e
	4.5.10	M800 1 voie : TB3 – Affectation des terminaux pour les sondes ISM de turbidité et les électrodes ISM de pH
	4511	M800 2 et 4 voies Fau · TB3 – Affectation des terminaux pour les conteurs de débit
46	Conney	ion du conteur de débit
1.0	461	Kit de câblage d'entrée du capteur de débit
	462	Composition du kit
	4.0.2	Côblage d'un contour de débit pour les sondes compatibles
	163	
	4.6.3	Cablage a un capieur de débit de tros « High » (Haut)
	4.6.3 4.6.4	Câblage pour les capteurs de débit de type « High » (Haut)

5.1	Mise en service du transmetteur	
5.2	Mise hors service du transmetteur	
Install	llation guidée	
Étalon	nnage	
7.1	Étalonnage de la sonde	
7.2	Étalonnage des sondes UniCond2e et UniCond4e (Sondes ISM uniquement)	
	7.2.1 Étalonnage de la conductivité des sondes UniCond2e et UniCond4e	
	7.2.1.1 Étalonnage en un point	
	7.2.1.2 Étalonnage en deux points	
	7.2.1.3 Étalonnage procédé	
	7.2.2 Étalonnage de la température des sondes UniCond2e et UniCond4e	
	7.2.2.1 Étalonnage en un point	
	7.2.2.2 Étalonnage en deux points	
7.3	Étalonnage des sondes Cond2e ou Cond4e	
	7.3.1 Étalonnage en un point	
	7.3.2 Étalonnage en deux points	
	7.3.3 Étalonnage procédé	
7.4	Étalonnage du pH	
	7.4.1 Étalonnage en un point	
	7.4.2 Étalonnage en deux points	
	7.4.3 Étalonnage procédé	
7.5	Étalonnage redox des électrodes de pH	
7.6	Étalonnage de sondes à oxygène ampérométriques	
	7.6.1 Étalonnage en un point	
	7.6.2 Étalonnage procédé	
7.7	Étalonnage des sondes à oxygène optiques (Sondes ISM uniquement)	
	7.7.1 Étalonnage en un point	
	7.7.2 Étalonnage en deux points	
	7.7.3 Étalonnage procédé	
7.8	Étalonnage des sondes de dioxyde de carbone dissous (Sondes ISM uniquement)	
	7.8.1 Étalonnage en un point	
	7.8.2 Étalonnage en deux points	
	7.8.3 Étalonnage procédé	
7.9	Étalonnage des sondes de conductivité thermique du CO2 (CO2 hi) (Sondes ISM uniquer	nent)
	7.9.1 Étalonnage en un point	-
	7.9.2 Étalonnage procédé	
7.10	Étalonnage des sondes à ozone (Sondes ISM uniquement)	
	7.10.1 Étalonnage en un point	
	7.10.2 Étalonnage procédé	
7.11	Étalonnage des capteurs de débit (Sondes ISM uniquement)	
	7.11.1 Étalonnage en un point	
	7.11.2 Étalonnage en deux points	
7.12	Étalonnage de la turbidité (InPro 8000)	
	7.12.1 Étalonnage multipoint	
	7.12.2 Etalonnage procédé	
	7.12.3 Etalonnage in situ	
_	7.12.4 Etalonnage manuel (Modifier)	
7.13	Etalonnage de la turbidité (InPro 8600 i)	
	7.13.1 Etalonnage procédé	
7.14	Vérification de la sonde	
7.15	Modification des constantes d'étalonnage des capteurs de débit	
7.16	Etalonnage électronique des sondes UniCond2e	
7.17	Etalonnage du transmetteur	
	/.I/.I Resistance (sondes analogiques uniquement)	
	7.17.2 Iempérature (sondes analogiques uniquement)	
	7.17.3 lension	
	/.1/.4 Courant	
	/.1/.5 Rg	
	/.1/.6 Rr	
	7.17.7 Etalonnage du débitmètre	
7.18	Vérification du débitmètre	
7.19	Etalonnage des sorties analogiques	
7.20	Etalonnage des entrées analogiques	
7 21	Maintenance	

Config	guration	
8.1		
	8.1.1 Config des voles	
	8.1.2 Mesures derivees	
	8.1.2.1 Mesure du pourcentage de rejet	
	8.1.2.2 pH calcule (applications pour centrales electriques uniquement)	
	8.1.2.3 CO ₂ calcule (applications pour centrales electriques uniquement)	
	8.1.3 Mode d'affichage	
	8.1.4 Définition des paramètres	
	8.1.4.1 Paramètres de conductivité	
	8.1.4.2 Paramètres de pH	
	8.1.4.3 Paramètres de mesure de l'oxygène basés sur des sondes ampérométr	iques
	8.1.4.4 Paramètres de mesure de l'oxygène basés sur des sondes optiques	
	8.1.4.5 Paramètres du dioxyde de carbone dissous	
	8.1.4.6 Paramètres de mesure de la conductivité thermique du CO ₂ dissous hi	
	8.1.4.7 Paramètres de mesure du COT	
	8.1.4.8 Paramètres de mesure du débit	
	8.1.4.9 Paramètres des sondes de turbidité (InPro 8000)	
	8.1.4.10 Paramètres des sondes de turbidité (InPro 8600i)	
	8.1.4.11 Capacité de déionisation (DI-Cap™)	
	8.1.5 Table de la courbe de concentration	
8.2	Source de température (sondes analogiques uniquement)	
8.3	Sorties analogiques	
8.4	Valeurs de consigne	
8.5	Configuration d'ISM (sondes ISM uniquement)	
	8.5.1 Dispositif de contrôle de la sonde	
	8.5.2 Nombre maximum de cycles NEP	
	8.5.3 Nombre maximum de cycles SEP	
	8.5.4 Nombre maximum de cycles d'autoclavage	
	8.5.5 Aiustement de la tension DLI	
	8.5.6 Paramètres du cycle SAN	
	8.5.7 Réinitialisation des compteurs des sondes UniCond2e	
	8.5.8 Définition de l'intervalle d'étalonnage des sondes UniCond2e	
86		
87	ISM / Alarme canteur	
8.8		
8 Q	Configuration de l'affichage	
8 10	Entrées numériques	
8 1 1	Svetàme	
0.11	Dégulateur DID	
0.12		
0.13	Selvice	
	8.13.1 Regidge des sonies analogiques	
	8.13.2 Lecture des sorties analogiques	
	8.13.3 Lecture des entrées analogiques	
	8.13.4 Réglage des relais	
	8.13.5 Lecture des relais	
	8.13.6 Lecture des entrées numériques	
	8.13.7 Mémoire	
	8.13.8 Écran	
	8.13.9 Étalonnage du clavier tactile	
	8.13.10 Diagnostic des voies	
8.14	Assistance technique	
8.15	Gestion des utilisateurs	
8.16	RAZ	
	8.16.1 Réinitialisation du système	
	8.16.2 Réinitialisation de l'étalonnage des sondes optiques à oxygène dissous	
	8.16.3 Réinitialisation de l'étalonnage des sondes UniCond2e	
	8.16.4 Réinitialisation du débit cumulé	
	8.16.5 Réinitialisation de la mesure du CO ₂ hi	
	8.16.6 Réinitialisation de la sonde de turbidité	
8,17	Sortie RS485	
5.17	8 17 1 Configuration de la sortie de l'imprimante	
	8 17 2 Configuration du journal de données	

9	ISM_		124					
	9.1	iMonitor	124					
	9.2	Messages	125					
	9.3	Diagnostics ISM	125					
		9.3.1 Electrodes pH/redox et sondes à oxygène, ozone et Cond4e	_125					
	~ .	9.3.2 Sondes UniCond2e ef UniCond4e	_126					
	9.4	Donnees d'étaionnage	126					
		9.4.1 Donnees a elalonnage de louies les sondes ISM (excepte les sondes Uniconaze el Unicona4e)	120					
	0.5		12/					
	9.0		120					
	9.0	lournal de bord	120					
10	Acciet		120					
10	10 1	Assistants config	129					
	10.2	Accès aux favoris	129					
	Maint	NRRRAD	120					
	1111	Nottovago du pappogu avant	130					
	11.1		_130					
12	Histor	ique du logiciel	_130					
	12.1	M800 Procédé	_130					
	12.2		130					
13	Dépan	nage	131					
	13.1	Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité)	101					
	12.2	Liste des massages d'arrour, des quartissements et des glarmes relatifs à la conductivité (résistivité) des condes ISM	_ I S I 1 2 2					
	13.2	Liste des messages d'erreur, des avertissements et des alarmes relatifs au pH	132					
	10.0	13.3.1 Électrodes de nH souf celles à double membrane	132					
		13.3.2 Électrodes de pH à double membrane (pH/pNg)	133					
		13.3.3 Messages redox	133					
		13.3.4 Message ISM 2.0 pH	134					
	13.4	Liste des messages d'erreur, des avertissements et des alarmes relatifs à l'O2 ampérométrique	134					
		13.4.1 Sondes de mesure de l'oxygène en forte concentration	134					
		13.4.2 Sondes de mesure de l'oxygène en faible concentration	_135					
		13.4.3 Sondes de mesure de l'oxygène à l'état de traces	135					
	13.5	Signalement des avertissements et des alarmes	_136					
		13.5.1 Signalement des avertissements	136					
		13.5.2 Signalement des diarmes	_13/					
14	Référe	nces de commande	138					
	14.1	Aperçu du transmetteur	138					
	14.2	Accessoires et pièces détachées	_138					
15	Carac	éristiques techniques	139					
	15.1	Caractéristiques générales	_139					
	15.2	Caractéristiques électriques	_142					
	15.3		_143					
		15.3.1 Modeles en polycarbonate (PC)	_143					
	15 /	15.3.2 Modeles en acier inoxyaable	143					
	10.4		143					
	10.0	15.5.1 Plaque d'identification du M800 versions 2 et 4 voies	_ 144]///					
		15.5.2 Plaque d'identification du M800 modèles 1 voie	145					
10	0							
10	Garan	ne	146					

Tableaux de tampons 17

7 Ta	ableaux de tampons	147
17	7.1 Tampons pH standard	147
	17.1.1 Mettler-9	147
	17.1.2 Mettler-10	148
	17.1.3 Tampons techniques NIST	148
	17.1.4 Tampons standard NIST (DIN et JIS 19266: 2000–01)	149
	17.1.5 Tampons Hach	149
	17.1.6 Tampons Ciba (94)	150
	17.1.7 Merck Titrisole, Riedel-de-Haën Fixanale	150
	17.1.8 Tampons WTW	151
	17.1.9 Tampons JIS Z 8802	151
17	7.2 Tampons pour électrode de pH à double membrane	152
	17.2.1 Tampons pH/pNa Mettler (Na+ 3,9M)	152

Introduction

1

Utilisation prévue – Le transmetteur multiparamètre M800 est un instrument de procédé en ligne qui permet de mesurer différentes caractéristiques des fluides et des gaz, notamment la conductivité, l'oxygène dissous, l'O₂ gazeux, l'ozone dissous, le CO₂ dissous, le pH/redox, le débit et la turbidité. Le M800 existe en plusieurs versions. La version indique le nombre et le type de paramètres de mesures couverts. Le numéro de la version est indiqué sur l'étiquette du transmetteur.

Le modèle M800 avec boîtier hygiénique en acier inoxydable poli est conçu pour les applications des secteurs pharmaceutiques, biotechnologiques et agroalimentaires.

Guide de sélection des paramètres M800 pour les versions à 2 et 4 voies

Ces modèles sont compatibles avec les capteurs de débit et les sondes ISM™ (numériques) suivantes.

	E	au	Procédé ¹⁾		
Paramètre	2 voies	4 voies	2 voies	4 voies	
pH/redox	•	•	•	•	
pH/pNa	_	_	•	•	
UniCond™ 2-e	•	•	•	•	
Conductivité 4-e	•	•	•	•	
Oxygène dissous amp.	-/•/- ³⁾	-/•/- ³⁾	• / • / • ²)	• / • / • ²)	
ppm/ppb/traces					
Oxygène amp. en phase	$-/ \bullet / - ^{3)}$	$-/ \bullet / - ^{3)}$	• / • / • ²)	• / • / • ²)	
gazeuse ppm/ppb/traces					
Oxygène dissous optique	• 3)	• 3)	• 2), 4)	• 2), 4)	
CO₂ dissous (InPro™ 5000i)	-	_	•	•	
CO ₂ hi (InPro 5500i)	_	_	• 4)	• 4)	
СОТ	•	•	_	_	
Ozone dissous	•	•	-	-	
Débit	•	•	_	_	

1) Les modèles « Procédé » sont fournis avec un boîtier en polycarbonate (PC) ou en acier inoxydable.

2) Sondes INGOLD

3) Sondes THORNTON

4) 2 voies : une sonde à oxygène dissous optique ou une sonde CO₂ hi doit être connectée à la voie 2.
 4 voies : des sondes à oxygène dissous optique ou CO₂ hi doivent être connectées à la voie 2 et/ou 4.

Guide de sélection des paramètres M800 pour la version à 1 voie

Ce modèle est compatible avec les sondes analogiques et ISM (numériques) suivantes.

	Procédé 1 voie 1)			
Paramètre	Analogique	ISM		
pH/redox	•	•		
pH/pNa	_	•		
UniCond 2-e / UniCond 4-e	-/-	• / •		
Conductivité 2-e / Conductivité 4-e	• / •	- / •		
Oxygène dissous amp.	• / • / • ²)	• / • / • ²)		
ppm/ppb/traces				
Oxygène amp. en phase	• / • / • ²)	• / • / • ²)		
gazeuse ppm/ppb/traces				
Oxygène dissous optique	_	• 2)		
CO ₂ dissous (InPro 5000i)	_	•		
CO ₂ hi (InPro 5500i)	_	•		
Turbidité	 (rétrodiffusion) 	•		

1) Les modèles « Procédé » sont fournis avec un boîtier en PC ou en acier inoxydable.

2) Sondes INGOLD

L'écran tactile couleur affiche les données de mesure et de configuration. La structure du menu permet à l'opérateur de modifier tous les paramètres de fonctionnement via l'écran tactile. Une fonction de verrouillage des menus, protégée par mot de passe, est disponible et empêche l'utilisation non autorisée du transmetteur. Le transmetteur multiparamètre M800 peut être configuré afin de pouvoir utiliser jusqu'à huit sorties analogiques et/ou huit sorties de relais pour le contrôle des procédés.

Le transmetteur multiparamètre M800 est équipé d'une interface de communication USB. Cette interface permet de transférer et de télécharger la configuration du transmetteur via un ordinateur personnel (PC).

Cette description correspond à la version de progiciel V2.5 du M800 Eau et V2.7 du M800 Procédé. Les versions sont constamment mises à jour, sans avis préalable.

2 Consignes de sécurité

Ce manuel présente des informations relatives à la sécurité sous les désignations et les formats suivants.

2.1 Définition des symboles et désignations présents sur l'équipement et dans la documentation

AVERTISSEMENT : RISQUES DE BLESSURES CORPORELLES.

ATTENTION : risque de dommage ou de dysfonctionnement de l'appareil.

REMARQUE : information importante sur le fonctionnement.

Sur le transmetteur ou dans ce manuel : Attention et/ou autre risque éventuel, y compris risque d'électrocution (voir les documents connexes).

Vous trouverez ci-dessous la liste des consignes et avertissements de sécurité d'ordre général. Le non-respect de ces consignes risque d'endommager l'équipement et/ou de blesser l'opérateur.

- Le transmetteur M800 doit être installé et utilisé uniquement par du personnel familiarisé avec ce type d'équipement et qualifié pour ce travail.
- Le transmetteur M800 doit être utilisé uniquement dans les conditions de fonctionnement spécifiées (voir la section 15 « Caractéristiques techniques »).
- Le transmetteur M800 ne doit être réparé que par du personnel autorisé et formé à cet effet.
- À l'exception de l'entretien régulier et des procédures de nettoyage, conformément aux descriptions de ce manuel, il est strictement interdit d'intervenir sur le transmetteur M800 ou de le modifier.
- Mettler-Toledo décline toute responsabilité en cas de dommages occasionnés par des modifications non autorisées apportées au transmetteur.
- Respectez les avertissements, les alertes et les instructions signalés sur, et fournis avec, ce produit.
- Installez le matériel comme spécifié dans ce manuel d'instruction. Respectez les réglementations locales et nationales.
- Les protections doivent être systématiquement mises en place lors du fonctionnement normal.
- Toute autre utilisation de l'équipement que celle spécifiée par le fabricant peut rendre inopérante la protection fournie par celui-ci.

AVERTISSEMENTS :

- L'installation de câbles de raccordement et l'entretien de ce produit nécessitent l'accès à des niveaux de tensions qui entraînent un risque d'électrocution.
- L'alimentation principale et les relais à contact raccordés sur une source électrique séparée doivent être déconnectés avant l'entretien.
- L'interrupteur ou le disjoncteur sera situé à proximité de l'équipement et à portée de l'OPÉRATEUR ; il sera signalé comme étant le dispositif de déconnexion de l'équipement.
- L'alimentation principale doit employer un interrupteur ou un disjoncteur comme dispositif de débranchement de l'équipement.
- L'installation électrique doit être conforme au Code électrique national américain et/ou toutes autres réglementations nationales ou locales en vigueur.

Ċ	REMARQUE :	ACTION DE COMMANDE DE RELAIS Les relais du transmetteur M800 se désactivent toujours en cas de perte d'alimentation, comme en état normal, quel que soit le réglage de l'état du relais pour un fonctionnement sous tension. Configurez tout système de contrôle utilisant ces relais en respectant une logique de sécurité absolue.
Ċ	REMARQUE :	PERTURBATIONS DU PROCÉDÉ Étant donné que les conditions de procédé et de sécurité peuvent dépendre du fonctionnement logique du transmetteur, fournissez les moyens appropriés pour éviter toute interruption pendant le nettoyage ou le remplacement de la sonde, ou pendant l'étalonnage de la sonde ou de l'instrument.
Ċ r	REMARQUE :	ce produit est un 4 fils avec une sortie analogique active 4-20 mA. Veuillez ne pas alimenter les terminaux 3 à 10 du TB1 et les terminaux 1 à 8 du TB3.

2.2 Mise au rebut adéquate de l'instrument

Lorsque le transmetteur n'est plus utilisé, respectez toutes les réglementations locales en matière d'environnement pour le jeter comme il convient.

3 Présentation de l'instrument

Les modèles M800 sont fournis :

- avec un boîtier 1/2 DIN en polycarbonate
- en acier inoxydable.

Les modèles M800 1/2 DIN en polycarbonate peuvent être montés sur un panneau, un mur ou une conduite. Les modèles M800 en acier inoxydable, quant à eux, peuvent être uniquement montés sur un mur ou une conduite.

3.1 Vue d'ensemble

3.1.1 Modèle à 1 voie

Fig. 1: Aperçu du modèle à une voie

- 1: Boîtier rigide en polycarbonate
- 2: Écran VGA tactile couleur
- 3: Terminaux d'alimentation
- 4: Terminaux de sortie relais
- 5: Terminaux des sorties analogiques/entrées numériques
- 6: Terminaux d'entrée de la sonde
- 7: Raccordement de la sonde de turbidité (InPro 8000)

3.1.2 Modèles à 2 et 4 voies

Fig. 2: Aperçu du modèle à une voie

- 1: Boîtier, en polycarbonate ou en acier inoxydable
- 2: Écran VGA tactile couleur
- 3: Terminaux d'alimentation
- 4: Terminaux de sortie relais
- 5: Terminaux des sorties analogiques/entrées numériques
- 6: Terminaux d'entrée de la sonde

3.2 Affichage

3.2.1 Écran d'accueil

Lorsque vous démarrez le M800, la fenêtre d'accueil suivante (écran de déconnexion) s'affiche automatiquement. Pour revenir à la fenêtre d'accueil depuis la fenêtre de menu, appuyez sur **a**. Le M800 quitte automatiquement la fenêtre de menu, ou tout autre écran de configuration, et revient à la fenêtre d'accueil au bout de 240 secondes si l'utilisateur n'a pas appuyé sur l'écran tactile.

REMARQUE : Le bouton « Info » explique les informations de diagnostic.

3.2.2 Ouvrir la fenêtre de menu

Lorsque vous vous trouvez sur la fenêtre d'accueil (écran de déconnexion), appuyez sur l'écran pour ouvrir la fenêtre de menu. Pour revenir à la fenêtre de menu depuis d'autres menus, appuyez sur 🖄.

REMARQUE : Le bouton « Info » explique les informations de diagnostic.

3.3 Courbe de mesure

Chaque mesure peut être affichée sous forme de courbe sur une période donnée. Les valeurs mesurées seront placées sur l'axe des ordonnées et la période concernée sur l'axe des abscisses du graphique affiché. Une mesure réelle de la valeur sélectionnée s'affichera également sous forme numérique au-dessus du graphique. Cette valeur est actualisée toutes les secondes.

Le graphique affichera uniquement les valeurs comprises dans la plage minimum/maximum. Les valeurs en dehors de la plage de mesure ou les valeurs non valides ne seront pas affichées. L'axe des ordonnées affichera la valeur maximale de l'unité et sa plage de mesure ; l'unité de l'axe des abscisses indique « mins » pour les mesures relevées en moins d'une heure et « hrs » pour les mesures relevées dans une même journée. Il existe 4 échelles pour l'axe des abscisses/des ordonnées. La valeur maximale sur l'axe des ordonnées est exprimée avec une seule décimale.

3.3.1 Ouvrir la fenêtre du graphique

Depuis la fenêtre de menu, appuyez deux fois sur n'importe quelle ligne de valeur (1 voie, 2 voies, 4 mesures, 8 mesures) pour afficher la courbe de cette mesure.

Lorsqu'une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche. Lorsque vous fermez cette fenêtre, vous revenez à la fenêtre de menu.

La barre rouge/jaune en haut de l'écran signale les messages reçus pendant l'affichage de la courbe. « H », « P », « AB » s'afficheront lorsque l'une de ces voies est en attente ou en cours d'utilisation.

18

3.3.2 Paramètres d'affichage du graphique

Pour modifier l'affichage du graphique, appuyez n'importe où sur le graphique pour afficher la fenêtre contextuelle des paramètres. Les paramètres sont définis par défaut, mais ils peuvent être modifiés lorsque plusieurs options sont disponibles.

Durée : bouton « Option ». Pour afficher la durée concernée (axe des abscisses)

REMARQUE : 1 h signifie : 1 mesure enregistrée/15 secondes, soit au total 240 mesures relevées en 1 heure. 1 jour signifie : 1 mesure enregistrée/6 minutes,

soit au total 240 mesures relevées en 1 jour.

Plage : bouton « Option » Par défaut (valeur par défaut) Personnalisée

1 h (valeur par défaut)

1 jour

Lorsque le mode « Par défaut » est défini sur la valeur maximale ou minimale, cela indique la plage de mesure complète pour cette unité. Un bouton « Max » ou « Min » n'est pas affiché. Si le paramètre peut être sélectionné, l'utilisateur peut définir manuellement les réglages maximum et minimum.

- Max : bouton « Modifier ». Valeur maximale pour cette unité (axe des ordonnées). xxxxxx, virgule flottante.
- Min : bouton « Modifier ». Valeur minimale pour cette unité (axe des ordonnées). xxxxxx, virgule flottante. Valeur Max. > Valeur Min.
- **REMARQUE :** les paramètres définis pour les deux axes et les mesures correspondantes sont stockés dans la mémoire du transmetteur. Une panne de courant rétablit les paramètres par défaut.

3.3.3 Fermer la fenêtre du graphique

Appuyez sur 🖄 dans la fenêtre du graphique pour revenir à la fenêtre de menu.

REMARQUE : lorsqu'une sonde est déconnectée/connectée, une fenêtre contextuelle s'affiche. Lorsque vous fermez cette fenêtre, vous revenez à la fenêtre de menu.

3.4 Commandes et navigation

3.4.1 Structure du menu

Voici l'arborescence du menu du M800 :

h

3.4.2 Commandes

Commande	Désignation
(hh)	Accès à l'écran de menu
1	Accès à l'écran d'accueil
ISM	Accès au menu ISM
*	Accès au menu Favoris
Le.e.	Accès au menu Étalonnage
*\$	Accès au menu Configuration
	Retour à la fenêtre de menu (voir la section 3.2.2 « Ouvrir la fenêtre de menu »)
	Accès au niveau de menu inférieur, par exemple ici iMonitor, Messages ou Diagnostics ISM
←	Retour au niveau de menu supérieur
<>	Changement de page dans un même niveau de menu 2 et 4 voies : changement de voie.
ب	Validation des valeurs et des options sélectionnées. Appuyez sur « ESC » si vous ne souhaitez pas conserver les changements.

3.4.3 Saisie des données

Le transmetteur M800 présente un clavier qui vous permet de modifier les valeurs. Appuyez sur le bouton ← pour enregistrer la valeur concernée. Si vous souhaitez quitter le clavier sans modifier les données, appuyez sur le bouton « ESC ».

REMARQUE : il est possible de modifier l'unité de certaines valeurs. Dans ce cas, le clavier affiche un bouton avec un « U ». Pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

REMARQUE : il est possible d'utiliser les lettres et/ou les nombres pour saisir certaines entrées. Dans ce cas, le clavier affiche un bouton « A,a,O ». Appuyez sur ce bouton pour basculer entre les majuscules, les minuscules et les nombres sur le clavier.

3.4.4 Menus de sélection

Quelques menus nécessitent la sélection d'un paramètre et/ou de données. Dans ce cas, le transmetteur affiche une fenêtre contextuelle. Appuyez sur le champ correspondant à la valeur pour sélectionner celle-ci. La fenêtre contextuelle se ferme et la valeur sélectionnée est enregistrée.

3.4.5 Boîte de dialogue « Save changes »

Plusieurs options sont proposées lorsque la boîte de dialogue « Saves changes » (enregistrer les modifications) s'affiche. « No » (non) efface les valeurs saisies, « Yes » (oui) enregistre les modifications effectuées et « Cancel » (annuler) vous permet de poursuivre la configuration.

3.4.6 Mots de passe

Le transmetteur M800 permet de verrouiller plusieurs menus. Si la fonction de verrouillage de sécurité du transmetteur est activée, un mot de passe doit être saisi afin d'accéder au menu. Voir la section 8.15 « Gestion des utilisateurs ».

3.4.7 Écran

REMARQUE : si une alarme se déclenche ou une erreur se produit, un bargraphe clignote sur l'écran du transmetteur M800. Ce bargraphe subsiste jusqu'à ce que la raison de son apparition ait été résolue (voir la section 13.5 « Signalement des avertissements et des alarmes »).

REMARQUE : pendant un étalonnage ou un cycle de nettoyage, ou lorsqu'une entrée numérique avec sortie analogique/relais/USB est en mode « Hold », un « H » clignote dans le coin supérieur droit de l'écran en face de la voie correspondante. Ce symbole reste visible pendant 20 secondes après la fin de l'étalonnage. Ce symbole demeure visible pendant 20 secondes supplémentaires après la fin de l'étalonnage ou d'un nettoyage. Il s'affiche aussi quand l'option Entrée numérique est désactivée.

4 Instructions d'installation

4.1 Déballage et contrôle de l'équipement

Examinez l'emballage d'expédition. S'il est endommagé, contactez immédiatement le transporteur pour connaître les instructions à suivre. Ne jetez pas l'emballage.

En l'absence de dommage apparent, ouvrez l'emballage. Vérifiez que tous les éléments apparaissant sur la liste de colisage sont présents.

Si des éléments manquent, avertissez-en immédiatement Mettler-Toledo.

4.2 Montage des modèles 1/2 DIN (boîtier en PC)

4.2.1 Dimensions du modèle 1/2 DIN (boîtier en PC)

Fig. 3: Dimensions du modèle 1/2 DIN (boîtier en PC)

1 Dimensions de la découpe du panneau

4.2.2 Procédure de montage – modèle 1/2 DIN (boîtier en PC)

Les modèles de transmetteur ½ DIN sont adaptés aux types de montage suivants : montage sur panneau, montage mural ou montage sur conduite. Pour un montage mural, l'intégralité du capot arrière est utilisée.

Le matériel de fixation pour montage sur panneau ou conduite doit être commandé. Reportez-vous à la section 14.2 « Accessoires et pièces détachées ».

Assemblage

Fig. 4: Assemblage – modèle 1/2 DIN (boîtier en PC)

- 1 1 presse-étoupe M25 x 1,5
- 2 4 presse-étoupes M20 x 1,5
- 3 4 vis

Généralités :

- Orientez le transmetteur de manière à diriger les presse-étoupes vers le bas.
- Les câbles acheminés à travers les presse-étoupes doivent convenir à une utilisation dans des zones humides.
- Pour obtenir une protection de boîtier IP66, tous les presse-étoupes doivent être en place.
 Utilisez uniquement un câble certifié UL, portant la mention « wet » (humide), « wet location » (zone humide) ou « outdoor » (extérieur), mesurant au minimum 6,6 mm de diamètre, employé dans la plage de serrage spécifié du dispositif de décharge de traction. N'utilisez pas de conduit en métal.
- Serrez les vis du panneau avant avec un couple de serrage de 2 Nm.

4.2.3 Modèle 1/2 DIN (boîtier en PC) – montage sur panneau

Pour garantir une bonne étanchéité, le panneau ou la porte doit être plat(e) et lisse. Les surfaces texturées ou rugueuses ne sont pas recommandées et risquent de limiter l'efficacité du joint fourni.

- Effectuez la découpe du panneau. Pour connaître les dimensions, reportez-vous à la section « Dimensions du modèle 1/2 DIN (boîtier en PC) » 4.2.1 « Dimensions du modèle 1/2 DIN (boîtier en PC) ».
 - Vérifiez que les surfaces avoisinant la découpe sont propres, lisses et exemptes de bavures.
- 2. Glissez le joint plat autour du transmetteur en partant du dos de l'appareil.
- 3. Placez le transmetteur dans le trou découpé. Vérifiez qu'il n'y a aucun écart entre le transmetteur et la surface du panneau.
- 4. Positionnez les deux supports de fixation de chaque côté du transmetteur, tel qu'illustré.
- 5. Tout en maintenant fermement le transmetteur dans le trou découpé, poussez les supports de fixation vers l'arrière du panneau.
- 6. Une fois les supports fixés, serrez-les contre le panneau à l'aide d'un tournevis. Pour obtenir un boîtier IP66, les deux fixations fournies doivent être fermement serrées pour garantir une bonne étanchéité entre le panneau du boîtier et le transmetteur.
 Le joint plat est alors comprimé entre le transmetteur et le panneau.

4.2.4 Modèle 1/2 DIN – montage mural

DANGER ! Danger de mort par électrocution ou risque d'électrocution : la profondeur maximale de vissage des orifices de fixation sur le boîtier est de 12 mm (0,47 pouce). Ne dépassez pas cette indication.

Fig. 5: Profondeur maximale de vissage

- 1. Procédez à l'installation du boîtier à l'aide du kit de montage mural. Ne dépassez pas cette profondeur de vissage.
- 2. Installez le boîtier sur le mur à l'aide du kit de montage mural. Fixez l'ensemble au mur à l'aide du matériel de fixation adapté à la surface. Vérifiez que le transmetteur est à niveau et solidement fixé au mur. Assurez-vous également d'avoir respecté l'espace de dégagement requis pour l'entretien et la maintenance du transmetteur. Orientez le transmetteur de façon à ce que les chemins de câble soient positionnés vers le bas.

Fig. 6: Montage mural avec kit de montage mural – modèle 1/2 DIN (boîtier en PC)

4.2.5 Modèle 1/2 DIN (boîtier en PC) – montage sur conduite

Fig. 7: Montage sur conduite – modèle 1/2 DIN (boîtier en PC)

- Utilisez uniquement les composants fournis par le fabricant pour installer le transmetteur M800 sur conduite. Pour connaître les références de commande, reportez-vous à la section 14.2 « Accessoires et pièces détachées ».
- Serrez les vis de fixation avec un couple de serrage de 2 à 3 Nm.

4.3 Montage du modèle en acier inoxydable

4.3.1 Dimensions du modèle en acier inoxydable

Fig. 8: Dimensions du modèle en acier inoxydable

4.3.2 Procédure de montage – modèle en acier inoxydable

Les modèles de transmetteur en acier inoxydable sont adaptés aux types de montage suivants : montage mural ou montage sur conduite. Pour un montage mural, l'intégralité du capot arrière est utilisée.

Le matériel de fixation pour un montage sur conduite doit être commandé. Reportez-vous à la section 14.2 « Accessoires et pièces détachées ».

Assemblage

Fig. 9: Montage - modèle en acier inoxydable

- 1 1 presse-étoupe M25 x 1,5
- 2 4 presse-étoupes M20 x 1,5
- 3 4 vis

Instructions générales :

- Orientez le transmetteur de façon à ce que les chemins de câble soient positionnés vers le bas.
- L'acheminement du câblage dans les chemins de câble doit être compatible avec un usage en zones humides.
- Pour obtenir une protection de boîtier IP66, tous les presse-étoupes doivent être en place.
 Pour obtenir une protection de boîtier IP66, tous les presse-étoupes doivent être en place.
 Utilisez uniquement des câbles certifiés UL, portant la mention « wet » (humide), « wet location » (zone humide) ou « outdoor » (extérieur), mesurant au minimum 6,6 mm de diamètre, employé dans la plage de serrage spécifié du dispositif de décharge de traction. N'utilisez pas de conduit en métal.

4.3.3 Modèle en acier inoxydable – montage mural

- 1. Procédez à l'installation du boîtier à l'aide du kit de montage mural. Ne dépassez pas cette profondeur de vissage.
- 2. Installez le boîtier sur le mur à l'aide du kit de montage mural. Fixez l'ensemble au mur à l'aide du matériel de fixation adapté à la surface. Vérifiez que le transmetteur est à niveau et solidement fixé au mur. Assurez-vous également d'avoir respecté l'espace de dégagement requis pour l'entretien et la maintenance du transmetteur. Orientez le transmetteur de façon à ce que les chemins de câble soient positionnés vers le bas.

Fig. 10: Montage mural avec kit de montage mural – modèle en acier inoxydable (boîtier en PC)

4.3.4 Modèle en acier inoxydable – montage sur conduite

Fig. 11: Montage sur conduite – modèle en acier inoxydable

 Utilisez uniquement les composants fournis par le fabricant pour installer le transmetteur M800 sur conduite. Pour connaître les références de commande, reportez-vous à la section 14.2 « Accessoires et pièces détachées ».

4.4 Raccordement électrique

DANGER ! Danger de mort par électrocution : éteignez l'instrument lors du raccordement électrique.

REMARQUE : il s'agit d'un transmetteur à 4 fils équipé d'une sortie analogique active de 4-20 mA.
Ne branchez pas les bornes de sortie analogique (Aout). Ces dernières correspondent aux bornes 3 à 10 du bornier TB1 et, pour les modèles à 2 ou 4 voies, aux bornes 1 à 8 du bornier TB3.

Les borniers se situent à l'intérieur du boîtier.

Tous les transmetteurs M800 sont conçus pour être raccordés à une source d'alimentation de 20 à 30 V CC ou 100 à 240 V CA. Reportez-vous aux caractéristiques techniques pour connaître la puissance nominale requise, puis dimensionnez le câblage en conséquence.

Les borniers sont conçus pour recevoir des câbles monoconducteurs et des fils souples dotés d'une section de fils comprise entre 0,2 mm² et 1,5 mm² (16-24 AWG).

- 1. Coupez l'alimentation.
- 2. Branchez l'alimentation de la manière suivante :
 - 20 à 30 V CC : N (-) pour neutre et L (+) pour ligne
 Modèles à 1 voie au bornier TB5, modèles à 2 ou 4 voies au bornier TB6.
 - 100 à 240 V CA : N pour neutre et L pour ligne
 - Modèles à 1 voie au bornier TB5, modèles à 2 ou 4 voies au bornier TB6.
- Pour le modèle en acier inoxydable : reliez à la terre la borne de mise à la terre comme indiqué sur la Fig. 12, page 31. La section du fil de terre doit être supérieure à 0,8 mm² (18 AWG).
- 4. Branchez la sonde, les signaux de sortie analogique, les signaux d'entrée numérique et les signaux de sortie de relais conformément à la section 4.5 « Définition du terminal ».
- 5. Pour le modèle en acier inoxydable : vérifiez que le fil de terre interne entre le boîtier et le capot avant est bien connecté.

DANGER ! Danger de mort par électrocution : pour le boîtier en acier inoxydable, reliez à la terre la borne de mise à la terre. vérifiez que le fil de terre interne entre le boîtier et le capot avant est bien connecté.

Fig. 12: Mise à la terre de la borne de mise à la terre et du fil de terre interne

- 1 Borne de mise à la terre
- 2 Borne de connexion du fil de terre interne entre le boîtier et le capot avant.

4.5 Définition du terminal

4.5.1 M800 monovoie

Connexions d'alimentation :

N (-) pour le neutre et L (+) pour le fil de ligne pour une source d'alimentation entre 20 et 30 V c.c. N pour le neutre et L pour le fil de ligne pour une source d'alimentation entre 100 et 240 V c.a.

Pour le modèle en acier inoxydable : reliez à la terre la borne de mise à la terre comme indiqué à la Fig. 12, page 31.

Numéro du terminal	TB1	TB2	TB3	TB4	TB5
					L (+)
					N (-)
					Terre
1	DI1+		1-Wire	Al1+	Relais1_NC
2	DI1-		GND5V	AI1-	Relais1_COM
3	Aout1+		RS485B	DI4+	Relais2_NO
4	Aout1-		RS485A	DI4-	Relais2_COM
5	Aout2+	Spécialement	GND5V	DI5+	Relais3_NO
6	Aout2-	pour les sondes	5V	DI5-	Relais3_COM
7	Aout3+	analogiques.	24V	DI6+	Relais4_NO
8	Aout3–	Non utilisé avec	GND24V	DI6-	Relais4_COM
9	Aout4+	les sondes ISM.	n.a.	Relais5_NO	n.a.
10	Aout4–		n.a.	Relais5_COM	n.a.
11	n.a.		n.a.	Relais6_NO	n.a.
12	n.a.		n.a.	Relais6_COM	n.a.
13	n.a.		n.a.	Relais7_NO	n.a.
14	n.a.		n.a.	Relais7_COM	n.a.
15	n.a.		n.a.	Relais8_NO	n.a.
16	n.a.		n.a.	Relais8_COM	n.a.

NO :normalement ouvert (contact ouvert si non actionné).

NC : normalement fermé (contact fermé si non actionné).

n.a.: indisponible

REMARQUE : ce produit est un 4 fils avec une sortie analogique active 4-20 mA. Veuillez ne pas alimenter les terminaux 3 à 10 du TB1.

4.5.1.1 Sonde de turbidité InPro 8000

Utilisez les deux connexions étiquetées « EMITTER » (émetteur) et « RECEIVER » (récepteur) pour connecter des sondes InPro 8000 METTLER TOLEDO uniquement. Des câbles de raccordement sont disponibles en diverses longueurs jusqu'à 170 m. Il n'est pas possible de mélanger les câbles de la sonde. Il est recommandé de visser à la main uniquement les deux connecteurs SMA du câble de la sonde sur les connecteurs du transmetteur.

ATTENTION : ne coupez ni ne raccourcissez les câbles de fibre optique. Pour couper des câbles de fibre optique et assembler des connecteurs SMA, des outils spécifiques sont nécessaires. Si vous souhaitez utiliser des câbles de raccordement plus courts, consultez votre fournisseur METTLER TOLEDO.

Référez-vous au manuel d'instruction approprié pour obtenir des informations détaillées sur l'installation et les utilisations spécifiques de sondes à fibre optique.

4.5.2 M800 2 voies

Connexions d'alimentation :

N (-) pour le neutre et **L** (+) pour le fil de ligne pour une source d'alimentation entre 20 et 30 V c.c. **N** pour le neutre et **L** pour le fil de ligne pour une source d'alimentation entre 100 et 240 V c.a.

Pour le modèle en acier inoxydable : reliez à la terre la borne de mise à la terre comme indiqué à la Fig. 12, page 31.

Numéro du terminal	TB1	TB2 (ISM 1/2 voies)	TB3	TB4	TB5	TB6
						L (+)
						N (–)
						Terre
1	DI1+	DI2+	Aout5+		Al1+	Relais1_NC
2	DI1-	DI2-	Aout5–		AI1-	Relais1_COM
3	Aout1+	1-Wire_Ch1	Aout6+		DI4+	Relais2_NO
4	Aout1-	GND5V_Ch1	Aout6–	<u> </u>	DI4-	Relais2_COM
5	Aout2+	RS485B_Ch1	Aout7+	a	DI5+	Relais3_NO
6	Aout2–	RS485A_Ch1	Aout7–	St	DI5-	Relais3_COM
7	Aout3+	GND5V_Ch1	Aout8+	<u> </u>	DI6+	Relais4_NO
8	Aout3–	5V_Ch1	Aout8-		DI6-	Relais4_COM
9	Aout4+	24V_Ch2	Ain_Ch3	ō	Relais5_NO	n.a.
10	Aout4–	GND24V_Ch2	AJ_Ch3	Z	Relais5_COM	n.a.
11	n.a.	1-Wire_Ch2	5V_Ch3		Relais6_NO	n.a.
12	n.a.	GND5V_Ch2	GND5V_Ch3		Relais6_COM	n.a.
13	n.a.	RS485B_Ch2	Bin_Ch4		Relais7_NO	n.a.
14	n.a.	RS485A_Ch2	BJ_Ch4		Relais7_COM	n.a.
15	n.a.	GND5V_Ch2	5V_Ch4		Relais8_NC	n.a.
16	n.a.	5V_Ch2	GND5V_Ch4		Relais8_COM	n.a.

NO :normalement ouvert (contact ouvert si non actionné).

NC : normalement fermé (contact fermé si non actionné).

n.a.: indisponible

REMARQUE : ce produit est un 4 fils avec une sortie analogique active 4-20 mA. Veuillez ne pas alimenter les terminaux 3 à 10 du TB1 et les terminaux 1 à 8 du TB3.

4.5.3 M800 4 voies

Connexions d'alimentation :

N (-) pour le neutre et L (+) pour le fil de ligne pour une source d'alimentation entre 20 et 30 V c.c. N pour le neutre et L pour le fil de ligne pour une source d'alimentation entre 100 et 240 V c.a.

Pour le modèle en acier inoxydable : reliez à la terre la borne de mise à la terre comme indiqué à la Fig. 12, page 31.

Numéro du terminal	TB1	TB2 (ISM 1/2 voies)	TB3	TB4 (ISM 3/4 voies)	TB5	TB6
						L (+)
						N (-)
						Terre
1	DI1+	DI2+	Aout5+	DI3+	Al1+	Relais1_NC
2	DI1-	DI2-	Aout5-	DI3-	AI1-	Relais1_COM
3	Aout1+	1-Wire_Ch1	Aout6+	1-Wire_Ch3	DI4+	Relais2_NO
4	Aout1-	GND5V_Ch1	Aout6-	GND5V_Ch3	DI4-	Relais2_COM
5	Aout2+	RS485B_Ch1	Aout7+	RS485B_Ch3	DI5+	Relais3_NO
6	Aout2-	RS485A_Ch1	Aout7-	RS485A_Ch3	DI5-	Relais3_COM
7	Aout3+	GND5V_Ch1	Aout8+	GND5V_Ch3	DI6+	Relais4_NO
8	Aout3–	5V_Ch1	Aout8-	5V_Ch3	DI6-	Relais4_COM
9	Aout4+	24V_Ch2	Ain_Ch5	24V_Ch4	Relais5_NO	n.a.
10	Aout4–	GND24V_Ch2	AJ_Ch5	GND24V_Ch4	Relais5_COM	n.a.
11	n.a.	1-Wire_Ch2	5V_Ch5	1-Wire_Ch4	Relais6_NO	n.a.
12	n.a.	GND5V_Ch2	GND5V_Ch5	GND5V_Ch4	Relais6_COM	n.a.
13	n.a.	RS485B_Ch2	Bin_Ch6	RS485B_Ch4	Relais7_NO	n.a.
14	n.a.	RS485A_Ch2	BJ_Ch6	RS485A_Ch4	Relais7_COM	n.a.
15	n.a.	GND5V_Ch2	5V_Ch6	GND5V_Ch4	Relais8_NC	n.a.
16	n.a.	5V_Ch2	GND5V_Ch6	5V_Ch4	Relais8_COM	n.a.

- NO: normalement ouvert (contact ouvert si non actionné).
- NC : normalement fermé (contact fermé si non actionné).
- n.a.: indisponible

REMARQUE : ce produit est un 4 fils avec une sortie analogique active 4-20 mA. Veuillez ne pas alimenter les terminaux 3 à 10 du TB1 et les terminaux 1 à 8 du TB3.

4.5.4 M800 1 voie : TB2 – Sondes analogiques de conductivité 2e/4e

	Cond 4-e ou 2-e				
Terminal	Fonction	Couleur			
1	Cnd int ¹	Blanc			
2	Non utilisé	-			
3	Cnd ext1 ¹⁾	Blanc/bleu			
4	Cnd ext1	-			
5	Non utilisé	-			
6	Cnd ext2	-			
7	Cnd int ^{2 2)}	Bleu			
8	Cnd ext2 (GND) 2)	Noir			
9	Non utilisé	-			
10	Non utilisé	-			
11	Non utilisé	-			
12	Ret. capteur de température à résistance/terre	Blindage nu			
13	Détection capteur de température	Rouge			
14	Capteur de température	Vert			
15	Non utilisé	-			
16	Sortie 5 V	-			

1) Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier sera peut-être nécessaire entre les terminaux 1 et 3.

 Pour les sondes de conductivité à 2 électrodes de fabricants tiers, un cavalier sera peut-être nécessaire entre les terminaux 7 et 8.

4.5.5 M800 1 voie : TB2 – Électrodes analogiques pour le pH/redox

	pH		Redox		
Terminal	Fonction	Couleur 1 ¹⁾	Fonction	Couleur	
1	Verre	Transparent	Platine	Transparent	
2	Non utilisé	_	_	-	
3	Non utilisé	_	_	-	
4	Non utilisé	_	-	_	
5	Non utilisé	_	_	-	
6	Référence	Rouge	Référence	Rouge	
7	Référence 2)	_	Référence 2)	-	
8	Masse liquide 2)	Bleu 3)	Masse liquide 2)	-	
9	Non utilisé	_			
10	Blindage (Terre)	Vert/jaune	Blindage (Terre)	Vert/jaune	
11	Non utilisé	_	-	-	
12	Ret. capteur de température/terre	Blanc	-	_	
13	Détection capteur de température	_	-	_	
14	Capteur de température	Vert			
15	Non utilisé	-	-	-	
16	Sortie 5 V			-	

1) Fil gris non utilisé.

- 2) Installez un cavalier entre les terminaux 7 et 8 pour les sondes redox et les électrodes de pH sans masse liquide.
- 3) Fil bleu pour l'électrode avec masse liquide.
| | | InPro 6800 | InPro 6900 | InPro 6950 |
|----------|------------------|-----------------|-----------------|-------------|
| Terminal | Fonction | Couleur | Couleur | Couleur |
| 1 | Non utilisé | - | - | - |
| 2 | Non utilisé | _ | - | - |
| 3 | Anode | Rouge | Rouge | Rouge |
| 4 | Anode | _ ¹⁾ | - ¹⁾ | - |
| 5 | Référence | _ ¹⁾ | _ ¹⁾ | Bleu |
| 6 | Non utilisé | - | - | - |
| 7 | Non utilisé | - | - | - |
| 8 | Garde | - | Gris | Gris |
| 9 | Cathode | Transparent | Transparent | Transparent |
| 10 | Blindage (terre) | Vert/jaune | Vert/jaune | Vert/jaune |
| 11 | Non utilisé | - | - | - |
| 12 | Ret. NTC (terre) | Blanc | Blanc | Blanc |
| 13 | Non utilisé | - | - | - |
| 14 | NTC | Vert | Vert | Vert |
| 15 | Non utilisé | - | - | - |
| 16 | Sortie 5 V | - | - | - |

4.5.6 M800 1 voie : TB2 – Sondes analogiques à oxygène

1) Installez le cavalier entre les terminaux 4 et 5 pour InPro 6800 et InPro 6900.

4.5.7 M800 2 et 4 voies : TB2 et TB4 – Affectation des terminaux pour les sondes ISM d'oxygène optique, de CO₂ hi, UniCond2e, UniCond4e et 5000TOCi

	TB2 (ISM 1/2 voies)	TB4 (ISM 3/4 voies)	Oxygène optique ¹⁾ , CO ₂ hi ¹⁾		UniCond2e ^{2),} UniCond4e ²⁾ , 5000TOCi
Terminal	Fonction	Fonction	Couleur du fil des câbles VP8	Couleur du fil des câbles 5 broches	Couleur du fil des câbles
1	DI2+	DI6+	-	-	-
2	DI2-	DI6-	-	-	-
3	1-Wire_Ch1	1-Wire_Ch3	-	-	-
4	GND5V_Ch1	GND5V_Ch3	-	-	-
5	RS485B_Ch1	RS485B_Ch3	-	-	Noir
6	RS485A_Ch1	RS485A_Ch3	-	-	Rouge
7	GND5V_Ch1	GND5V_Ch3	-	-	Blanc
8	5V_Ch1	5V_Ch3	-	-	Bleu
9	24V_Ch2	24V_Ch4	Gris	Marron	-
10	GND24V_Ch2	GND24V_Ch4	Bleu	Noir	-
11	1-Wire_Ch2	1-Wire_Ch4	-	-	-
12	GND5V_Ch2	GND5V_Ch4	Vert/jaune	Gris	-
13	RS485B_Ch2	RS485B_Ch4	Marron	Bleu	Noir
14	RS485A_Ch2	RS485A_Ch4	Rose	Blanc	Rouge
15	GND5V_Ch2	GND5V_Ch4	-	Jaune	Blanc
16	5V_Ch2	5V_Ch4	-	-	Bleu

1) Une sonde d'oxygène optique ou de conductivité thermique du CO₂ peut être connectée aux terminaux TB2 et TB4.

2) Fil transparent non connecté.

4.5.8 M800 2 et 4 voies : TB2 et TB4 – Affectation des terminaux pour les sondes ISM d'ozone, de CO₂, d'oxygène ampérométriques, de conductivité à 4 électrodes et les électrodes de pH

	TB2 (ISM 1/2 voies)	TB4 (ISM 3/4 voies)	pH, oxygène amp., cond 4e, CO $_2$ et ozone
Terminal	Fonction	Fonction	Couleur du fil des câbles
1	DI2+	DI6+	_
2	DI2-	DI6-	_
3	1-Wire_Ch1	1-Wire_Ch3	Transparent (âme du câble)
4	GND5V_Ch1	GND5V_Ch3	Rouge
5	RS485B_Ch1	RS485B_Ch3	-
6	RS485A_Ch1	RS485A_Ch3	-
7	GND5V_Ch1	GND5V_Ch3	_
8	5V_Ch1	5V_Ch3	_
9	24V	24V	-
10	GND24V	GND24V	-
11	1-Wire_Ch2	1-Wire_Ch4	Transparent (âme du câble)
12	GND5V_Ch2	GND5V_Ch4	Rouge
13	RS485B_Ch2	RS485B_Ch4	_
14	RS485A_Ch2	RS485A_Ch4	_
15	GND5V_Ch2	GND5V_Ch4	_
16	5V_Ch2	5V_Ch4	-

4.5.9 M800 1 voie : TB3 – Affectation des terminaux pour les sondes ISM d'oxygène optique, de CO₂ hi, UniCond2e et UniCond4e

	твз	Oxygène optique, CO $_2$ hi		UniCond2e ¹⁾ , UniCond4e ¹⁾
Terminal	Fonction	Couleur du fil des câbles VP8	Couleur du fil des câbles 5 broches	Couleur du fil des câbles
1	1-Wire	-	-	-
2	GND5V	-	Jaune	-
3	RS485B	Marron	Bleu	Noir
4	RS485A	Rose	Blanc	Rouge
5	GND5V	Vert/jaune	Gris	Blanc
6	5V	-	-	Bleu
7	24V	Gris	Marron	-
8	GND24V	Bleu	Noir	-
9	Non utilisé	-	-	-
10	Non utilisé	-	-	-
11	Non utilisé	-	-	-
12	Non utilisé	-	-	-
13	Non utilisé	-	-	-
14	Non utilisé	-	-	-
15	Non utilisé	-	-	_
16	Non utilisé	-	-	-

1) Fil transparent non connecté.

4.5.10 M800 1 voie : TB3 – Affectation des terminaux pour les sondes ISM de turbidité et les électrodes ISM de pH

	TB3	pH, oxygène amp., CO ₂ et conductivité 4e	Turbidité (InPro 8600 i/D1, InPro 8600 i/D3)
Terminal	Fonction	Câbles : couleur du fil	Câbles : couleur du fil
1	1-Wire	Transparent (âme du câble)	
2	GND5V	Rouge	Jaune
3	RS485B	-	Bleu
4	RS485A	-	Blanc
5	GND5V	-	Gris
6	5V	-	-
7	24V	-	Marron
8	GND24V	-	Noir
9	Non utilisé	-	-
10	Non utilisé	-	-
11	Non utilisé	-	-
12	Non utilisé	-	-
13	Non utilisé	-	-
14	Non utilisé	-	-
15	Non utilisé	_	-
16	Non utilisé	-	-

1) Fil transparent non connecté.

4.5.11 M800 2 et 4 voies Eau : TB3 – Affectation des terminaux pour les capteurs de débit

	TB3	Débit « High », « Low », « Type2 »
Terminal	Transmetteur	Fonction
1	Aout5+	-
2	Aout5-	-
3	Aout6+	-
4	Aout6-	-
5	Aout7+	-
6	Aout7-	-
7	Aout8+	-
8	Aout8-	-
9	Ain_Ch3 / Ain_Ch5	Entrée d'impulsion du débit
10	AJ_Ch3 / AJ_Ch5	+10 V c.c
11	5V_Ch3 / 5V_Ch5	+5 V c.c
12	GND5V_Ch3 / GND5V_Ch5	Terre
13	Ain_Ch4 / Ain_Ch6	Entrée d'impulsion du débit
14	AJ_Ch4 / AJ_Ch6	+10 V c.c
15	5V_Ch4 / 5V_Ch6	+5 V c.c
16	GND5V_Ch4 / GND5V_Ch6	Terre

4.6 Connexion du capteur de débit

Le transmetteur M800 est conçu pour fonctionner avec plusieurs types de capteurs. Ces capteurs requièrent différentes configurations de câblages. Vous trouverez ci-dessous les instructions pour le câblage de différents types de sondes METTLER TOLEDO Thornton afin de les utiliser avec le transmetteur. Veuillez vous renseigner auprès du fabricant si vous désirez raccorder des sondes non proposées par METTLER TOLEDO Thornton car certaines risquent de ne pas être compatibles.

4.6.1 Kit de câblage d'entrée du capteur de débit

Ce kit contient des composants pouvant être nécessaires au niveau des terminaux d'entrée afin de conditionner les signaux de la sonde. Pour plus de détails à propos du câblage, reportez-vous aux sections suivantes ou au manuel d'instruction.

4.6.2 Composition du kit

Ce kit contient les éléments suivants :

- 4 serre-fils
- 4 résistances 10K ohm pour utilisation avec les sondes de type Burket 8020 et 8030 et les sondes de la gamme GF Signet 2500.
- 4 résistances 1K ohm pour utilisation avec les sondes de la gamme Data Industrial 200 et les sondes de type à insertion Fluidyne
- 4 condensateurs 0,33 uF 50 V pour utilisation avec des sondes de type Berket 8020 et 8030, des sondes des gammes Data Industrial 200 et 4000, des sondes de la gamme GF Signet 2500, des capteurs de débit sanitaire de type à turbines, des sondes de type à insertion Fluidyne et des sondes de type Vortex Racine Federated (auparavant Asahi/America).

4.6.3 Câblage d'un capteur de débit pour les sondes compatibles

Les sections suivantes fournissent des informations sur le câblage pour connecter divers capteurs de débit au transmetteur M800. Lorsque vous réglez le capteur de débit dans le menu « Configuration » du transmetteur, la première invite vous demande de sélectionner le TYPE de capteur de débit à connecter.

Les trois choix suivants sont disponibles :

- « High » : tous les capteurs de débit figurant à la section 4.4.4
- « Low » : capteurs de débit Signet P515 uniquement, figurant à la section 4.4.5
- « Type 2 » : capteurs de débit Asahi, figurant à la section 4.4.6

4.6.4 Câblage pour les capteurs de débit de type « High » (Haut)

Les informations suivantes sont utilisées lors de la connexion de capteurs de débit inline à effet Hall 5 V.c.c. (type Burkert 8020 et 8030). **Modèles THORNTON 33901 à 33935.**

Rallonge non fournie. Utilisez une paire torsadée à deux conducteurs avec blindage, calibre 22 AWG (Belden 8451 ou équivalent), de 305 m max.

Les informations de câblage suivantes sont utilisées lors de la connexion de capteurs de débit magnétiques à hélice Badger (anciennement Data Industrial 200).

Modèles THORNTON 33142 à 33145, 33159 à 33162 et 33273.

Rallonge fournie avec la sonde. Utilisez une paire torsadée à deux conducteurs avec blindage, calibre 20 AWG (Belden 9320 ou équivalent) pour augmenter la longueur à 610 m max.

Les informations de câblage suivantes sont utilisées lors de la connexion de capteurs de débit magnétiques à hélice Badger (anciennement Data Industrial 4000). Modèles THORNTON 33174 à 33177, 33171 et 33172.

Rallonge de 6,1 m fournie avec la sonde. Utilisez un câble à trois conducteurs avec blindage, calibre 20 AWG (Belden 9364 ou équivalent) pour augmenter la longueur à 610 m max.

Les informations de câblage suivantes sont utilisées lors de la connexion d'un capteur de débit à effet Hall centrifuge plane (gamme GF Signet 2500). **Modèles THORNTON 33282, 33285, 33287, 33298 à 33305.**

Rallonge de 7,6 m fournie avec la sonde. Utilisez une paire torsadée à deux conducteurs avec blindage, calibre 22 AWG (Belden 8451 ou équivalent) pour augmenter la longueur à 305 m max.

Les informations de câblage suivantes sont utilisées lors de la connexion de capteurs de débit sanitaires à turbines. Modèles THORNTON 33336 à 33377 (Hoffer) et 33441 à 33450 (Sponsler).

Rallonge de 6,1 m fournie avec la sonde. Utilisez un câble à trois conducteurs avec blindage, calibre 20 AWG (Belden 9364 ou équivalent) pour augmenter la longueur à 915 m max.

Rallonge de 6,1 m fournie avec la sonde. Utilisez un câble à trois conducteurs avec blindage, calibre 20 AWG (Belden 9364 ou équivalent) pour augmenter la longueur à 915 m max.

Les informations de câblage suivantes sont utilisées lors de la connexion d'un capteur de débit de type à insertion Spirax Sarco/Emco (anciennement Fluidyne). Modèles THORNTON 33358 à 33375.

Rallonge non fournie. Utilisez une paire torsadée à deux conducteurs avec blindage, calibre 20 AWG (Belden 9320 ou équivalent) pour augmenter la longueur à 610 m max.

4.6.5 Câblage pour les capteurs de débit de type « Low » (Bas)

Les informations de câblage suivantes sont utilisées lors de la connexion de capteurs de débit (GF Signet 515). **Modèles THORNTON 33189, 33193, 33195, 33196 et 33229.**

Rallonge non fournie. Utilisez une paire torsadée à deux conducteurs avec blindage, calibre 22 AWG (Belden 8451 ou équivalent), longueur de 61 m max.

4.6.6 Câblage pour les capteurs de débit « Type 2 »

Les informations de câblage suivantes sont utilisées lors de la connexion de capteurs de débit à effet Vortex Racine Federated (anciennement Asahi/America). **Modèles THORNTON 33308** à **33335.**

Rallonge non fournie. Utilisez un câble à trois conducteurs avec blindage, calibre 20 AWG (Belden 9364 ou équivalent) de 305 m de long au maximum.

5 Mise en service ou hors service du transmetteur

5.1 Mise en service du transmetteur

Une fois le transmetteur branché au circuit d'alimentation, il est activé dès la mise sous tension du circuit.

5.2 Mise hors service du transmetteur

Déconnectez d'abord l'appareil de la source d'alimentation principale, puis débranchez toutes les autres connexions électriques. Retirez l'appareil du panneau. Utilisez les instructions d'installation de ce manuel comme référence pour démonter le matériel de fixation.

Tous les paramètres du transmetteur stockés en mémoire sont conservés après sa mise hors tension.

6

Installation guidée

REMARQUE : n'utilisez pas le menu Configuration guidée après la configuration du transmetteur, car certains réglages (configuration de sortie analogique, par ex.) risqueraient d'être réinitialisés.

Lisez les explications suivantes pour en savoir plus sur les différents réglages compris dans la configuration guidée.

Sélectionnez la **voie** que vous souhaitez configurer ainsi que le paramètre situé sur la même ligne.

Lorsque « Auto » est sélectionné, le transmetteur M800 reconnaît automatiquement le type de sonde. La voie peut également être définie sur un certain paramètre de mesure, selon le type de transmetteur. Pour en savoir plus, reportez-vous à la section 8.1.1 « Config des voies ».

Appuyez sur le bouton correspondant à la mesure **M1** pour configurer la mesure. Pour plus d'informations sur les options de configuration, reportez-vous à la section 8.1.1 « Config des voies ».

REMARQUE : si vous avez sélectionné la configuration guidée pour configurer un capteur de débit, vous pouvez saisir le facteur d'étalonnage du capteur indiqué sur l'étiquette du capteur ou du certificat. Appuyez alors sur le bouton « Cal Factor ». Pour les capteurs de type « High » et « Low », vous pouvez également saisir la pente et le décalage. Dans le cas d'un capteur « Type2 », vous pouvez saisir la pente ainsi qu'une table de valeurs K et F.

Affectez le signal de sortie **Aout'X'** à la mesure correspondante en appuyant sur « Yes ». Pour plus d'informations sur la configuration du signal de sortie analogique, reportez-vous à la section 8.3 « Sorties analogiques ».

Saisissez la valeur minimale, qui correspond à la valeur de début de la plage de sortie analogique.

Saisissez la **valeur maximale**, qui correspond à la valeur de fin de la plage du signal de sortie analogique.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

I CONFIG \ Guided Setup					
Set Point1	Yes				
Туре	High				
High	7.5000 pH				
Relay	#3				
-					
< 212	>	ţ			

Affectez la valeur de consigne (**Set Point 'X'**) à la mesure correspondante en appuyant sur « Yes ». Pour plus d'informations sur la configuration de la valeur de consigne, reportez-vous à la section 8.4 « Valeurs de consigne ».

Sélectionnez le type de la valeur de consigne (Type).

Le type de la valeur de consigne peut être « Haut », « Bas », « Between » (entre), « Outside » (extérieur) ou « Off » (désactivé). Une valeur réglée sur « Outside » déclenchera une alarme dès que la mesure dépasse sa limite maximale ou minimale. Une valeur réglée sur « Between » déclenchera une alarme dès que la mesure se trouve entre sa limite maximale et sa limite minimale.

REMARQUE : si le type de la valeur de consigne n'est pas réglé sur « Désactivé », vous pouvez définir des paramètres supplémentaires. Voir la description suivante.

En fonction du type de valeur de consigne sélectionné, vous pouvez saisir les valeurs en fonction des limites.

Sélectionnez le relais souhaité qui sera activé si les conditions définies sont remplies en appuyant sur le champ **Relais**. Si le relais choisi est utilisé pour une autre tâche, le transmetteur affiche le message « Relay Conflict » (conflit de relais).

Pour quitter le menu des réglages de la Configuration guidée, appuyez sur . Pour revenir à la fenêtre de menu (voir la section 3.2 « Affichage »), appuyez sur . Le M800 ouvrira la boîte de dialogue « Enregistrer Modif » (enregistrer les modifications).

7 Étalonnage

Pour consulter la structure du menu, reportez-vous à la section 3.4.1 « Structure du menu ».

CHEMIN D'ACCÈS : 🗥 \ Cal

REMARQUE : Durant l'étalonnage, les sorties de la voie correspondante conservent leurs valeurs actuelles pendant 20 secondes après la fermeture du menu Étalonnage. Un « H » clignote dans le coin supérieur droit de l'écran lorsque les sorties sont en mode « Maintien ». Reportez-vous aux sections 8.3 « Sorties analogiques » et 8.4 « Valeurs de consigne » pour modifier le mode « Hold » des sorties.

REMARQUE : Sondes ISM : « Ajuster » détecte les écarts, réajuste la sonde et stocke les écarts dans l'historique d'étalonnage de la sonde. « Étalonner » détecte les écarts, ne réajuste pas la sonde, mais stocke les écarts dans l'historique d'étalonnage de la sonde. Sondes analogiques : « Enregistrer » permet d'étalonner la sonde. Les valeurs réelles peuvent

être affichées tant que la sonde est branchée.

7.1 Étalonnage de la sonde

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Sélectionnez la voie (Chan) que vous souhaitez étalonner.

REMARQUE : Durant l'étalonnage de la sonde, les sorties conservent leurs valeurs actuelles pendant 20 secondes après la fermeture du menu Étalonnage. Un « H » clignote dans le coin supérieur droit de l'écran lorsque les sorties sont en mode « Maintien ». Reportez-vous aux sections 8.3 « Sorties analogiques » et 8.4 « Valeurs de consigne » pour modifier le mode « Maintien » des sorties.

Lisez les explications suivantes pour en savoir plus sur les options et la procédure d'étalonnage.

7.2 Étalonnage des sondes UniCond2e et UniCond4e (Sondes ISM uniquement)

7.2.1 Étalonnage de la conductivité des sondes UniCond2e et UniCond4e

Le M800 permet de réaliser un étalonnage en un ou deux points ou un étalonnage procédé de la conductivité ou de la résistivité des sondes à deux ou quatre électrodes.

REMARQUE : les résultats varient en fonction des méthodes, des instruments d'étalonnage

et/ou de la qualité des références utilisés lors de l'étalonnage d'une sonde de conductivité.

REMARQUE : pour la réalisation des mesures, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans les réglages de conductivité, et non la compensation de température sélectionnée lors de la procédure d'étalonnage (voir également la section 8.1.4.1 « Paramètres de conductivité » ; CHEMIN D'ACCÈS : CONFIG\Mes\Paramétrage).

Ouvrez le menu « Calibrer Capteur » (étalonnage de la sonde) (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur) et choisissez la voie à étalonner.

Vous pouvez accéder aux menus suivants :

- **Unité :** Choisissez entre l'unité de conductivité (S/cm) et l'unité de résistivité (Ω-cm).
- Méthode : Sélectionnez la procédure d'étalonnage de votre choix. Vous pouvez choisir entre étalonnage en 1 point, étalonnage en 2 points ou étalonnage procédé.
- **Options :** Sélectionnez le mode de compensation de votre choix pour la procédure d'étalonnage.
 - Vous pouvez choisir entre « Aucune », « Standard », « Light 84 », « Std 75 °C », « Linéaire 25 °C » (linéaire 25 °C), « Linéaire 20 °C », « Glycol.5 », « Glycol.1 », « Cation », « Alcool » et « NH₃ » (ammoniaque).
 - Avec « Aucune », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.
 - La compensation « Standard » comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.
 - La compensation « Light 84 » correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.
 - L'option de compensation « Std 75 °C » est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).
 - La compensation « Linéaire 25 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C. 2,4818 Mohm-cm).
 - La compensation « Linéaire 20 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.
 - La compensation « Glycol.5 » correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.
 - La compensation « Glycol1 » correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.
 - La compensation « Cation » est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échangeur cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.
 - La compensation « Alcool » correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.
 - La compensation « NH₃ » est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur. Dans ce cas, un champ de saisie supplémentaire s'affichera.

Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

7.2.1.1 Étalonnage en un point

Sélectionnez la procédure d'étalonnage en 1 point (voir la section 7.2.1 « Étalonnage de la conductivité des sondes UniCond2e et UniCond4e »). Avec les sondes à deux ou quatre électrodes, un étalonnage en un point correspond à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

AL\Calibrate Sen

1 Init

Placez l'électrode dans la solution de référence et appuyez sur le bouton « Suivant ».

<u>ត</u> រ	CAL\Calibrate Sensor	
Chan	Ch1 UniCond2e 1-point Slope]
Lisit	Point1 228.4 nS/cm	
Matha	11.223	
IVIEU IO	11.223 ps/cm	
Option		
	Cancel Back Next	
		÷ –

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur le bouton ← pour modifier la valeur concernée.

$$\widehat{\mathcal{T}}$$

Nevt

Chur Cht UniCont2e Sensor Chur Sope 0.0998 Metro Offset -0.0000 Option **REMARQUE :** pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « SaveCal » pour appliquer la nouvelle valeur d'étalonnage calculée et la stocker dans l'historique d'étalonnage de la sonde. Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur « Fait », le M800 revient au menu Étalonnage de la sonde.

7.2.1.2 Étalonnage en deux points

Sélectionnez la procédure d'étalonnage en 2 points. Avec les sondes à quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à quatre électrodes.

Unan	CHAN_1	UniCond2e	
Unit	S/cm		
Method	2-Point		
Option	Options		

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

100.2	201 Collingto Concer	
	CAL (Calibrate Sensor Ch1 UniCond2e 2-point	
Chan		
Unit	Press "Next" when sensor is in	
Metho	solution 1	
Option		
	Cancel	

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

d'étalonnage afin d'éviter toute contamination des solutions de référence.

🖞 \CAL \Calibrate Sensor 2e 2-p 11.20 Doint µS/cm Met 105.41 r6/cm

AL\Calibrate Senso 610 CM UNIC nd2e 2-pc Uni Me

CAL LCall Point2 12.88 uS/cm Unit 11.200 µ£/cn Met Back Next

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

ATTENTION : rincez les sondes avec une solution aqueuse de pureté élevée entre les points

Appuyez sur le champ **Point1** pour saisir le point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

REMARQUE: pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la première solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne). Appuyez sur « Suivant » pour poursuivre l'étalonnage.

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point2** pour saisir le point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

ALL Calibrate Sensor					
Chan	Ch1 UniCond2e 2-point				
Unit	Point2 11.10 µS/cm				
Metho	11.200 µS/cm				
Option					
	Cancel Back Next	-			
		5			

<u>ត</u> ្រុ	CAL \ Cali	ibrate Sensor	
Char	Ch1 UniCo	ond2e 2-point	
Unit	Slope	0.0998	
Metho	Offset	-0.0070	
Option			
	Cancel	SaveCal Back	
			5

al CAL \ Calibrate Sensor			
	Ch1 UniCond2e 2-point		
Chan Unit Metho	Calibration Saved Successfully! Re- install sensor.		
Option	Done		

REMARQUE : pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la deuxième solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « SaveCal » pour appliquer la nouvelle valeur d'étalonnage calculée et la stocker dans l'historique d'étalonnage de la sonde. Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur « Fait », le M800 revient au menu Étalonnage de la sonde.

7.2.1.3 Étalonnage procédé

Sélectionnez la procédure d'étalonnage « Process » (voir la section 7.2.1 « Étalonnage de la conductivité des sondes UniCond2e et UniCond4e »). Avec les sondes à deux ou guatre électrodes, un étalonnage procédé correspond toujours à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

to capture the measure 3.281 µS/cm

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et la fenêtre de menu si la voie concernée est sélectionnée dans la fenêtre.

6	METTLER		
< CH4	AN_1		>
	4.42	µS/cm	
	12.82	°C	
	226.1	KΩ-cm	
	55.1	٩F	
ism	*	12	

3.275 3.281 ۸au Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

Appuyez sur le champ **Point1** pour saisir la valeur de conductivité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « SaveCal » pour appliquer la nouvelle valeur d'étalonnage calculée et la stocker dans l'historique d'étalonnage de la sonde. Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.2.2 Étalonnage de la température des sondes UniCond2e et UniCond4e

Le M800 permet de réaliser un étalonnage en un ou deux points de la température des sondes UniCond2e et UniCond4e.

Ouvrez le menu « Calibrer Capteur » (étalonnage de la sonde) (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur) et choisissez la voie à étalonner.

Vous pouvez accéder aux menus suivants :

៉ៅICAL	Calibrate Senso	or
Chan	CHAN_1 Un	iCond2e
Unit	°C	
Method	1-Point	Slope
Verify		Cal
		5

Unité : Choisissez l'unité de température (°C ou °F).

Méthode : Sélectionnez la procédure d'étalonnage de votre choix. Vous pouvez choisir entre étalonnage en 1 point et étalonnage en 2 points.

7.2.2.1 Étalonnage en un point

Sélectionnez la procédure d'étalonnage en 1 point. Avec les sondes à deux ou quatre électrodes, un étalonnage de la température en un point correspond à un étalonnage de la pente ou du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Chan	CHAN_1	UniCond2e	
Unit	*C	1	
Method	1-Point	' Slope	lope
		Offset	_

Appuyez sur le champ de saisie droit **Method** (méthode). Choisissez entre un étalonnage de la pente (« Slope ») ou du décalage (« Offset ») en appuyant sur le champ correspondant.

Chan	CHAN_1	IniCond2e		
Unit	°C .			
Method	1-Point		Offset	٦

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Transmetteur M800

<u>ה</u> ו	CAL\Calibrate Sensor	
~	Ch1UniCond2e 1-point Offset H]
Unan		
Unit	Point1 25.00 °C	
Metho	25.69 °C	н.,
_		
Ľ	Cancel Back Next	
		÷ –

Placez l'électrode dans la solution de référence et appuyez sur le bouton « Suivant ».

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage.

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde.

Un clavier apparaît pour modifier la valeur. Appuyez sur - pour accepter la valeur.

<u>គ</u> ីរ(CAL\Calibrate Sensor	
	Ch1UniCond2e 1-point Offset H	
Unan		
Unit	Point1 25.70 °C	
Metho	25.69 °C	x.
		<u> </u>
	Cancel Back Next	

L'écran affiche la valeur saisie pour la solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

二 (1)	CAL \ Calibra	ate Sensor		
	Ch1 UniCond2	2e 1-point Offset	Н	
Unit	Slope	1.0000		
Metho	Offset	0.0487		x,
	Cancel Sav	veCal Back		
				5

<u>ا</u> ش	CAL\Calibrate Sensor	
Chan	Ch1 UniCond2e 1-point Offset	
Unit	Calibration Saved Successfullyl Re- install sensor.	<i>.</i>
	Done	

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « SaveCal » pour appliquer la nouvelle valeur d'étalonnage calculée et la stocker dans l'historique d'étalonnage de la sonde. Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur « Fait », le M800 revient au menu Étalonnage de la sonde.

7.2.2.2 Étalonnage en deux points

Sélectionnez la procédure d'étalonnage en 2 points (voir la section 7.2.2 « Étalonnage de la température des sondes UniCond2e et UniCond4e »). Avec les sondes à deux ou quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente ou du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Chan CHAN_1 UniCond2e Unit <u>C</u> Method <u>2-Point</u> Cal

Chun Chillocado 2-paint H Unit Metho Cancel Net Net Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

Transmetteur M800

靣 (CAL\Calibrate Sensor	
Char	Ch1 UniCond2e 2-point	
Unit	Point1 25.70 °C	
Metho	4.99 ℃	
	Cancel Back Next	
		5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir le point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour la première solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

AL\Calibrate Sensor "Next" when sensor is in Met solution 2

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

ក្រាំង	CAL\Calibrate Sensor	
Chan	Ch1UniCond2e 2-point H	
Unit	Point2 50.00 *C	
Metho	46.38 *	
	Cancel Back Next	
		5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point2** pour saisir le point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

	SAL (Calibrate Sensor	
Chan	Ch1 UniCond2e 2-point H	
Unit	Point2 46.35 °C	
Metho	46.38 °≎	
	Cancel Back Next	
		5

L'écran affiche la valeur saisie pour la deuxième solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

茴 \(CAL \ Cali	brate Sensor		
~	Ch1 UniCo	nd2e 2-point	н	
Unit	Slope	0.9991		
Metho	Offset	0.9123		
	Cancel	SaveCal Back		
				5

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « SaveCal » pour appliquer la nouvelle valeur d'étalonnage calculée et la stocker dans l'historique d'étalonnage de la sonde. Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur « Fait », le M800 revient au menu Étalonnage de la sonde.

7.3 Étalonnage des sondes Cond2e ou Cond4e

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Le M800 permet de réaliser un étalonnage en un ou deux points ou un étalonnage procédé de la conductivité ou de la résistivité des sondes à deux ou quatre électrodes.

REMARQUE : les résultats varient en fonction des méthodes, des instruments d'étalonnage et/ou de la qualité des références utilisés lors de l'étalonnage d'une sonde de conductivité.

REMARQUE : pour la réalisation des mesures, il convient de prendre en compte la compensation de température pour l'application telle qu'elle est définie dans les réglages de conductivité, et non la compensation de température sélectionnée lors de la procédure d'étalonnage (voir également la section 8.1.4.1 « Paramètres de conductivité »).

Vous pouvez accéder aux menus suivants :

Unité :	Choisissez entre l'unité de conductivité ou de résistivité.
---------	---

- Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point, 2 points ou procédé).
- **Options :** Sélectionnez le mode de compensation de la température de votre choix pour la procédure d'étalonnage.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur.

Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

7.3.1 Étalonnage en un point

Avec les sondes à deux ou quatre électrodes, un étalonnage en un point correspond à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Chan CHAN 1 Conde Unit Skm Method 1-Point Option Options Verify Cal

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution de référence et appuyez sur « Suivant ».

Saisissez la valeur du point d'étalonnage (Point1).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM, appuyez sur :« Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur : « SaveCal » pour effectuer un étalonnage. Il est possible d'afficher les coefficients d'étalonnage lorsque la sonde est connectée au transmetteur. « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

55

7.3.2 Étalonnage en deux points

Avec les sondes à deux ou quatre électrodes, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la première solution de référence et appuyez sur « Suivant ».

ATTENTION : rincez les sondes avec une solution aqueuse de pureté élevée entre les points d'étalonnage afin d'éviter toute contamination des solutions de référence.

Saisissez la valeur du premier point d'étalonnage (Point1).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

Placez l'électrode dans la deuxième solution de référence et appuyez sur « Suivant ».

Saisissez la valeur du deuxième point d'étalonnage (Point2).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur : « SaveCal » pour effectuer un étalonnage. Il est possible d'afficher les coefficients d'étalonnage lorsque la sonde est connectée au transmetteur. « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.3.3 Étalonnage procédé

Avec les sondes à deux ou quatre électrodes, un étalonnage procédé correspond toujours à un étalonnage de la pente. La procédure suivante décrit la méthode d'étalonnage avec une sonde à deux électrodes. L'étalonnage avec une sonde à quatre électrodes doit être adapté en conséquence.

∰≀CAL	Calibrate Sensor	
Chan	CHAN_1 Cond4e	
Unit	S/cm	
Method	Process	
Option	Options	
Verify	Cal	
	5	

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et la fenêtre de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur de conductivité de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu.

Saisissez la valeur de conductivité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.4 Étalonnage du pH

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Pour les électrodes de pH, le transmetteur M800 permet de réaliser des étalonnages en un point, en deux points ou procédé avec 9 jeux de tampons prédéfinis ou une saisie manuelle. Les valeurs de tampons font référence à une température de 25 °C. Pour étalonner l'instrument avec reconnaissance automatique du tampon, vous avez besoin d'une solution tampon pH standard correspondant à l'une de ces valeurs. Sélectionnez le tableau de tampons adéquat avant de procéder à l'étalonnage automatique (voir la section 17 « Tableaux de tampons »). La stabilité du signal de la sonde pendant l'étalonnage peut être contrôlée par l'utilisateur ou vérifiée automatiquement par le transmetteur (voir la section 8.1.4.2 « Paramètres de pH »).

Chan	CHAN_1 pH	VORP
Unit	pH	
Method	1-Point	
Option	Options	
Verify		Cal

REMARQUE : pour les électrodes de pH à double membrane (pH/pNa), seul le tampon Na+ 3,9M (voir la section 17.2.1 « Tampons pH/pNa Mettler (Na+ 3,9M) ») est disponible.

Vous pouvez accéder aux menus suivants :

Unité : sélectionnez °C, °F.*

Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point, 2 points ou procédé).

Options : Vous pouvez sélectionner le tampon utilisé pour l'étalonnage ainsi que la stabilité du signal de la sonde requise pendant l'étalonnage (voir aussi la section 8.1.4.2 « Paramètres de pH »). Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

* seule la procédure en 1 point est disponible pour °C, °F

7.4.1 Étalonnage en un point

Avec les électrodes de pH, un étalonnage en un point correspond à un étalonnage du décalage.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Chan CHAN_1 pHORP Unit pH Pla Method 1-Puint Options Cat

ALCAL \Calibrate Se

Placez l'électrode dans la solution tampon et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (**Point1**), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

58

REMARQUE : si l'option « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

Le bouton « ReCal » s'applique à l'étalonnage en un point, en deux points et procédé, en fonction de la version de l'électrode de pH.

7.4.2 Étalonnage en deux points

Avec les électrodes de pH, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage.

습\CAL	\Calibrate Sens	or
Chan	CHAN_1 pt	H/ORP
Unit	pH	
Method	2-Point	
Option	Options	
Verify		Cal
		t

Appuyez sur « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon 1 et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (**Point1**), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'**option** « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à placer l'électrode dans la deuxième solution tampon.

Appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

L'écran indique le tampon reconnu par le transmetteur (Point2), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.4.3 Étalonnage procédé

Avec les électrodes de pH, un étalonnage procédé correspond à un étalonnage du décalage.

CAL \Calibrate Sens CHAN 1 BH/ORF Methor Process

Appuyez sur « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre.

Une fois le pH de l'échantillon déterminé, appuyez de nouveau sur l'icône de l'étalonnage dans la fenêtre de menu.

Saisissez la valeur du pH de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.5 Étalonnage redox des électrodes de pH

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Pour les électrodes de pH avec masse liquide basée sur la technologie ISM, le transmetteur M800 vous permet d'effectuer un étalonnage redox en plus de l'étalonnage de pH.

REMARQUE : si vous choisissez l'étalonnage redox, les paramètres définis pour le pH (voir la section 8.1.4.2 « Paramètres de pH ») ne seront pas pris en compte. Pour les électrodes de pH, le transmetteur M800 permet de réaliser un étalonnage redox en un point.

Vous pouvez accéder aux menus suivants :

Sélectionnez « ORP » en appuyant sur le champ correspondant. Unité : Méthode: « 1-Point » s'affiche.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Saisissez la valeur du premier point d'étalonnage (Point1).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Unit

CAL \ Calibrate

Unit Methor N 1 02 h

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.6 Étalonnage de sondes à oxygène ampérométriques

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

Le M800 permet de réaliser un étalonnage en un point ou un étalonnage procédé des sondes à oxygène ampérométriques.

REMARQUE : avant d'exécuter l'étalonnage à l'air, pour une précision maximale, vous devez saisir la pression barométrique et l'humidité relative, comme indiqué dans la section 8.1.4.3 « Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques ».

Vous pouvez accéder aux menus suivants :

- **Unité :** Vous pouvez choisir entre plusieurs unités pour l'oxygène dissous et l'oxygène gazeux.
- Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé).
 Options : Si vous avez choisi la méthode « 1-point », la pression d'étalonnage, l'humidité relative et pour l'étalonnage de la pente le mode de stabilité du signal de la sonde pendant l'étalonnage peuvent être sélectionnés. Pour la méthode « Process », vous pouvez modifier la pression du procédé, la pression de l'étalonnage et le paramètre « PressCal/Proc ». Voir aussi la section 8.1.4.3 « Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques ». Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

7.6.1 Étalonnage en un point

Un étalonnage en un point des sondes à oxygène correspond toujours à un étalonnage de la pente en un point (autrement dit à l'air) ou un étalonnage zéro (décalage). Un étalonnage de la pente en un point est effectué dans l'air et un étalonnage du décalage en un point est réalisé à 0 ppb d'oxygène. L'étalonnage zéro pour l'oxygène dissous est possible mais normalement il n'est pas recommandé car il est extrêmement difficile d'atteindre un état à oxygène zéro. Il n'est conseillé de procéder à un étalonnage au point zéro que si un haut degré de précision est exigé à des concentrations d'oxygène faibles (inférieures à 5 % de l'air).

Choisissez entre un étalonnage de la pente (« Slope ») ou du décalage (« Offset ») en appuyant sur le champ correspondant.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

REMARQUE : si les tensions de polarisation pour le mode Mesure et le mode Étalonnage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode « Maintien », avant de revenir au mode Mesure.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton « Suivant ».

Saisissez la valeur du point d'étalonnage (Point1).

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'**option** « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

REMARQUE : le mode Auto n'est pas disponible pour l'étalonnage du décalage. Si vous avez sélectionné le mode Auto et êtes passé après d'un étalonnage de la pente à un étalonnage du décalage, le transmetteur réalisera l'étalonnage en mode Manuel.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.6.2 Étalonnage procédé

Un étalonnage procédé des sondes à oxygène correspond à un étalonnage de la pente ou du décalage.

Choisissez entre un étalonnage de la pente (« Slope ») ou du décalage (« Offset ») en appuyant sur le champ correspondant.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et la fenêtre de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la concentration d'oxygène de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu.

Saisissez la concentration d'oxygène de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

in \CAL \Calib

Methor

CHAN 2 C2 net

ppm

1-Point

Pour les sondes ISM, appuyez sur : « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Pour les sondes analogiques, appuyez sur « SaveCal » pour effectuer un étalonnage. Les valeurs calculées peuvent être affichées tant que la sonde est connectée au transmetteur. Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster », « Calibrer » ou « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !).

7.7 Étalonnage des sondes à oxygène optiques (Sondes ISM uniquement)

CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer capteur

L'étalonnage de l'oxygène de sondes optiques est un étalonnage en deux points, un étalonnage de procédé ou un étalonnage en un point, en fonction du modèle de sonde connecté au transmetteur.

REMARQUE : avant d'exécuter l'étalonnage à l'air, pour une précision maximale, vous devez saisir la pression barométrique et l'humidité relative, comme indiqué dans la section 8.1.4.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques ».

Vous pouvez accéder aux menus suivants :

- **Unité :** Vous pouvez choisir entre plusieurs unités. Les unités sont affichées pendant l'étalonnage.
- **Méthode :** Sélectionnez la procédure d'étalonnage de votre choix (1 point, 2 points ou procédé).
- **Options :** Si vous avez choisi la méthode « 1-point », vous pouvez sélectionner la pression d'étalonnage, l'humidité relative et le mode de stabilité du signal de la sonde pendant l'étalonnage. Pour la méthode « Process », vous pouvez modifier la pression du procédé, la pression de l'étalonnage, le paramètre « ProcCalPress » et le mode de l'étalonnage procédé. Voir aussi la section 8.1.4.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques ». Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

7.7.1 Étalonnage en un point

Généralement, un étalonnage en un point est effectué dans l'air. Il est néanmoins possible d'utiliser d'autres gaz ou solutions d'étalonnage.

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Pendant un étalonnage en un point, la phase à ce point est mesurée puis extrapolée sur la plage de mesure.

៍ៅCAL	Calibrate Sensor	
Chan	CHAN_2 02 opt.	
Unit	ppm	
Method	1-Point	
Option	Options	
Verify	Cal	
	÷	נ

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton « Suivant ».

Saisissez la valeur du point d'étalonnage (Point1).

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur présente les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0) comme le résultat de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.7.2 Étalonnage en deux points

L'étalonnage d'une sonde optique est toujours un étalonnage de la phase du signal de fluorescence en direction de la référence interne. Un étalonnage en deux points est une combinaison d'un premier étalonnage à l'air (100 %), au cours duquel une nouvelle phase P100 est mesurée, et d'un étalonnage à l'azote (0 %) au cours duquel une nouvelle phase P0 est mesurée. Cette routine d'étalonnage donne la courbe d'étalonnage la plus précise sur toute la plage de mesure.

Appuyez sur « Cal » pour lancer l'étalonnage.

Placez la sonde dans l'air ou dans le gaz d'étalonnage, puis appuyez sur le bouton « Suivant ».

Saisissez la valeur du premier point d'étalonnage (Point1).

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à changer de gaz.

Appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'option « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur présente les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0) comme le résultat de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

Chan CHAN 2 O2 opt Unt Sair Muthod Process Option Options Cut

7.7.3 Étalonnage procédé

Appuyez sur « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la concentration d'oxygène de l'échantillon, appuyez sur l'icône de l'étalonnage dans la fenêtre de menu.

Saisissez la concentration d'oxygène de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran présente désormais les valeurs pour la phase de la sonde à 100 % d'air (P100) et à 0 % d'air (P0).

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

REMARQUE : si vous avez sélectionné « Scaling » (mise à l'échelle) pour l'étalonnage procédé (voir la section 8.1.4.4 « Paramètres de mesure de l'oxygène basés sur des sondes optiques »), les valeurs d'étalonnage ne sont pas enregistrées dans l'historique d'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !).

7.8 Étalonnage des sondes de dioxyde de carbone dissous (Sondes ISM uniquement)

Pour les sondes de dioxyde de carbone (CO_2) dissous, le transmetteur M800 propose un étalonnage en un point, en deux points ou procédé. Pour l'étalonnage en un point ou en deux points, il est possible d'utiliser la solution avec pH = 7,00 et/ou pH = 9,21 du tampon standard Mettler – 9 (voir aussi la section 8.1.4.5 « Paramètres du dioxyde de carbone dissous ») ou de saisir une valeur de tampon manuellement.

Vous pouvez accéder aux menus suivants :

- **Unité :** Vous pouvez choisir entre plusieurs unités pour la pression partielle et le dioxyde de carbone dissous.
- Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé).

Options : Vous pouvez sélectionner le tampon utilisé pour l'étalonnage ainsi que la stabilité du signal de la sonde requise pendant l'étalonnage (voir aussi la section 8.1.4.5 « Paramètres du dioxyde de carbone dissous »). Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode d'étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

Chan	CHAN_1 C	Qa	
Unit	pH		
Method	1-Point		
Option	Options		

7.8.1 Étalonnage en un point

Avec les sondes de CO₂, un étalonnage en un point correspond à un étalonnage du décalage.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (Point1), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'**option** « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.8.2 Étalonnage en deux points

Avec les sondes de CO₂, un étalonnage en deux points correspond à un étalonnage de la pente et du décalage.

Chan	CHAN_1 CO	
Unit	pH	
Method	2-Point	
Option	Options	
Verify		Cal

Appuyez sur « Cal » pour lancer l'étalonnage.

Placez l'électrode dans la solution tampon 1 et appuyez sur « Suivant ».

L'écran indique le tampon reconnu par le transmetteur (**Point1**), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'**option** « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

Le transmetteur vous invite à placer l'électrode dans la deuxième solution tampon.

Appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

L'écran indique le tampon reconnu par le transmetteur (Point2), ainsi que la valeur mesurée.

Le M800 contrôle la stabilité du signal de mesure et agit dès que le signal est suffisamment stable.

REMARQUE : si l'**option** « Stabilité » est définie sur « Manuel », appuyez sur « Suivant » une fois que le signal de mesure est suffisamment stable pour continuer l'étalonnage.

65

Le transmetteur affiche la valeur pour la pente et pour le décalage comme résultat de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche.

7.8.3 Étalonnage procédé

Avec les sondes de CO₂, un étalonnage procédé correspond à un étalonnage du décalage.

Appuyez sur « Cal » pour lancer l'étalonnage.

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur correspondante de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu.

Saisissez la valeur de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Si vous sélectionnez « Ajuster » ou « Étalonner », l'écran affiche le message « Sauvegarde de l'étalonnage réussie ! ».

7.9 Étalonnage des sondes de conductivité thermique du CO₂ (CO₂ hi) (Sondes ISM uniquement)

CHEMIN D'ACCÈS : H \ Cal \ Calibrer capteur

Le M800 permet de réaliser un étalonnage en un point à l'aide d'un gaz de référence (CO₂) qui présente une valeur de pression partielle connue du dioxyde de carbone. Il permet également d'effectuer un étalonnage procédé sur la base d'un échantillon de procédé analysé.

REMARQUE : la sonde est conçue pour mesurer avec précision la pression partielle ou la concentration de CO_2 en phase liquide uniquement ! En phase gazeuse, la sonde indiquera uniquement des valeurs correctes de la pression partielle du CO_2 gazeux dans le menu d'étalonnage en un point.

Vous pouvez accéder aux menus suivants :

៏ដែ	Calibrate Sense	or
Chan	CHAN_2 CO	De hi
Unit	mbar	
Method	1-Point	
Option	Options	
Verify		Cal
		÷ 1

Unit : Vous pouvez choisir entre l'unité de pression et de concentration du CO₂.

Méthode/Options : Sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé) et l'option de stabilité (manuel/auto).

Si vous avez choisi la méthode « 1-point », seules la pression d'étalonnage et le mode de stabilité du signal de la sonde pendant l'étalonnage peuvent être sélectionnées (la sonde s'attend à être placée dans un gaz d'étalonnage).

Pour la méthode « Process », seules les valeurs de concentration peuvent être choisies comme valeurs de pression ou de concentration (la sonde s'attend à être placée dans des liquides).

REMARQUE : avec le gaz de référence (CO₂), utilisez l'étalonnage en un point. Avec des liquides, utilisez l'étalonnage procédé. Lorsque vous remplacez la MembraCap, effectuez toujours en premier lieu un étalonnage au gaz en un point. Les modifications prennent effet lorsque vous quittez le mode d'étalonnage. Une fois le mode Étalonnage fermé, les valeurs définies dans le menu Configuration sont de nouveau valides.

Char Ch2 CCalibrate Sensor Char Ch2 COa N 1-point Char Ch2 COa N 1-point Char Ch2 COa N 1-point Ch2 Coa

7.9.1 Étalonnage en un point

Avec la sonde de conductivité thermique, un étalonnage en un point correspond à un étalonnage de la pente. Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Exposez la sonde de conductivité thermique à un gaz de référence dont la concentration en CO₂ est connue, puis appuyez sur le bouton « Suivant ». Saisissez la valeur du point d'étalonnage (Point1) en mbar ou hPa.

Chan Ch2 COu N 1-point H Chan Point 1013 mbar Metric 1000.0 mbar Cotico Appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

	Ch2 CO ₄ hi 1-p	point	н
hit l	Slope	***** miv	
1etho	BaseLine	1 m/	
ption	Save	Adjust Calibr	ato

L'écran indique la valeur de la pente et la valeur référence comme résultats de l'étalonnage. Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage. Si vous sélectionnez « Ajuster » ou « Étalonner », l'écran affiche le message « Sauvegarde de l'étalonnage réussie ! ».

7.9.2 Étalonnage procédé

Avec la sonde de conductivité thermique, un étalonnage procédé correspond à un étalonnage de la pente.

Choisissez l'étalonnage procédé et l'unité souhaitée dans le menu Étalonnage. Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

<u></u>	CAL\Calibrate Sensor	
	Ch2 CO ₂ hi Process	
Chan	Press "Enter" to capture the measured	
Unit	value	
Metho	20.00 a/L	
		_
	Cancel	
		_

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre.

Après avoir déterminé la valeur de CO₂ de l'échantillon, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu. Saisissez la valeur de CO₂ de l'échantillon.

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et la valeur référence comme résultats de l'étalonnage.

< CH2 COL H Process Point1 22 00 g/L 20.00 g/L 15.02 × 200 g/L

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !).

7.10 Étalonnage des sondes à ozone (Sondes ISM uniquement)

Le M800 permet de réaliser un étalonnage en un point ou un étalonnage procédé des sondes à ozone. L'étalonnage de l'ozone dissous doit être réalisé rapidement car l'ozone se décompose vite dans l'oxygène, en particulier dans un environnement chaud.

Ouvrez le menu « Calibrer Capteur » (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : A Cal\Calibrer Capteur) et choisissez la voie à étalonner.

Vous pouvez accéder aux menus suivants :

Unité : Vous pouvez choisir entre plusieurs unités pour l'ozone dissous.Méthode : Sélectionnez la procédure d'étalonnage de votre choix (1 point ou procédé).

7.10.1 Étalonnage en un point

Sélectionnez la méthode d'étalonnage en un point. Un étalonnage en un point des sondes à ozone correspond à un étalonnage zéro (décalage).

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

尚 い	CAL1Calibrate Sensor	
Char	Ch1 O3 1-point	
Unit	Remove sensor from process, put sensor in air or cal cas	
<u> </u>	Cancel Next	
		5

Placez la sonde dans le gaz d'étalonnage (l'air, par exemple), puis appuyez sur le bouton « Suivant ».

鄙 い	CAL\Calibrate Sensor	
Chan	Ch1 O3 1-point	
Unit	Point1 0.000 ppm	
Metho	0.013 ppm	
	Cancel Back Next	
		<u>ta</u>

尚 い	CAL \ Calib	rate Sensor		
	Ch1 O3 1-p	oirt		
Chan				
Unit	Point1	0.008 p	m	
Metho		0.013 P	m	
			_	
	Cancel	Back	Next	
				5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour la solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Une fois le signal de mesure stable, appuyez sur le bouton « Suivant » pour continuer l'étalonnage.

二 二	CAL\Ce	librate Sens	or	
	Ch1 O3	1-point	Н	1
Unit	Slope	- 0.1000	0 nA/ppb	
Metho	Offset	-1.00	00 nA	
	Save	Adj	ust Calibrate	ı
	Cancel	Ba	:k	
				5

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun réajustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage

<u>ا</u> ل	CAL\Calibrate Sensor	
Chan	Ch1 O3 1-point	
Unit	Calibration Saved Successfully! Re-	
Metho	install sensor.	
	Done	
		5

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur le bouton « Fait », le M800 revient au menu Étalonnage.

7.10.2 Étalonnage procédé

Sélectionnez la méthode d'étalonnage « Process ». Un étalonnage procédé des sondes à ozone correspond à un étalonnage de la pente ou du décalage.

Sélectionnez la méthode d'étalonnage de votre choix.

Appuyez sur « Cal » pour lancer l'étalonnage.

 Verify
 Edt
 Cat

 Image: Chi 03 Process Supe
 Chi 03 Process Supe

 Chan
 Press Tarter' to capture the measured value

 Unit
 0.1113 ppm

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Un « P » clignotera dans la fenêtre de mesure pour indiquer qu'un étalonnage procédé est en cours. 0.113 0.113 Après avoir déterminé la valeur d'ozone de l'échantillon, appuyez sur l'icône de l'étalonnage pour terminer l'étalonnage procédé.

Appuyez sur le champ Point1 pour saisir la valeur d'ozone de l'échantillon. Appuyez sur 🛏 pour accepter la valeur.

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

	a *	ETTLER	
<	Ch1 03 F	Process Slope] >
	Slope	-0.10000 nA/ppb	
	Offset	-1.000 nA	
	Save	Adjust	
ist	Cancel	Back	*\$\$

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuvez sur « Ajuster » pour détecter les écarts, réajuster la sonde et stocker les écarts dans l'historique d'étalonnage de la sonde. Appuyez sur « Étalonner » pour détecter les écarts et les stocker dans l'historique d'étalonnage de la sonde (aucun régiustement n'est effectué). Appuyez sur « Annuler » pour annuler l'étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Ajuster » ou « Calibrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur le bouton « Fait », le M800 revient à la fenêtre de menu

7.11 Étalonnage des capteurs de débit (Sondes ISM uniquement)

Le transmetteur M800 permet de réaliser un étalonnage en un ou deux points du capteur de débit, de modifier ou d'enregistrer les constantes d'étalonnage et de contrôler le signal du débit. La méthode la plus courante d'étalonnage pour les capteurs de débit consiste à saisir les constantes d'étalonnage adéquates du capteur à l'aide de la fonction « Edit » (modifier). Certains utilisateurs choisissent de réaliser un étalonnage en ligne du capteur de débit en procédant à un étalonnage en un ou deux points. Un système de référence externe est alors nécessaire. Lors de l'étalonnage en ligne d'un capteur de débit, les résultats varient en fonction des méthodes et des instruments d'étalonnage utilisés.

Ouvrez le menu « Calibrer Capteur » (étalonnage de la sonde) (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : 🗥 Cal/Calibrer Capteur) et choisissez la voie à étalonner.

REMARQUE : la voie du capteur de débit « Type 2 » ne peut être sélectionnée. Le transmetteur M800 permet de saisir un tableau de facteurs K et F pendant la procédure de configuration guidée (voir la section 6 « Installation guidée »).

Sélectionnez la voie (modèle à quatre voies uniquement) et l'option d'étalonnage de votre choix. Les choix disponibles sont « GPM », « liters/minute » (litres/minute), « meters3/hour » (mètres cubes/heure), « ft/sec » (pieds/s) ou « meters/sec » (mètres/s) (pour un étalonnage du débit en un ou deux points), « Edit » (modifier) et « Verifier ». Appuvez sur [ENTER].

Chan	CHAN_5 Flow hi
Unit	GPM
Method	1-Point

Vous pouvez accéder aux menus suivants :

Unité : Vous pouvez choisir entre plusieurs unités de débit.

Définissez le débit souhaité, puis appuyez sur le bouton « Suivant ».

Sélectionnez la procédure d'étalonnage de votre choix (1 point ou 2 points). Méthode :

7.11.1 Étalonnage en un point

Sélectionnez la méthode d'étalonnage « 1-Point ». Un étalonnage en un point d'un capteur de débit correspond à un étalonnage de la pente.

Appuyez sur « Cal » pour lancer l'étalonnage.

CAL \ Calibrate Sensor

គីរ	CAL\Calibrate Sensor	
Chan	Ch5 Flow hi 1-point H	
Unit	Point1 598.0 GPM	
Metho	612.00 GPM	
	Cancel Back Next	

<u>ا</u> للہ ا	CAL \ Calib	orate Sensor	
Chan	Ch5 Flow h	ii 1-point	
Unit	Point1	608.0 GPM	
Matha		612.00 GPM	
ryietrio		612.00 GPM	
_			
	Cancel	Back Next	
			<u>-</u>

SAL 1 Cali ate Sens 36 FI 1.0234 Slope Unit 0.0000 064 eCal Back

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour le système de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

En sélectionnant « Annuler », vous effacerez les valeurs saisies et le M800 reviendra au menu Étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Calibration Saved Successfully! Reinstal sense

Appuyez sur « Enregistrer » pour enregistrer les facteurs d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche les messages « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !) et « Please re-install sensor » (Veuillez réinstaller la sonde). Lorsque vous appuyez sur le bouton « Fait », le M800 revient au menu Étalonnage.

7.11.2 Étalonnage en deux points

Sélectionnez la méthode d'étalonnage en deux points. Un étalonnage en deux points d'un capteur de débit calcule une nouvelle pente et un nouveau décalage.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Définissez le débit souhaité pour le premier point, puis appuyez sur le bouton « Suivant ».

Chan Ch5 Pow la 2-point Chan Ch5 Pow la 2-point Unit Point 0000 GPM Metra 70.353 GPM Cancel Back Next

CAL \Calibrate Sensor

L'écran affiche la valeur saisie pour le système de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Metro 70.353 GPM

se set flow rate2

Back N

70.10 GPM

Appuyez sur le bouton « Next » pour continuer l'étalonnage.

Définissez le débit souhaité pour le deuxième point, puis appuyez sur le bouton « Suivant ».

<u></u>	CAL\Calibrate Sensor	
	Ch5 Flow hi 2-point H]
Unit	Point2 0.000 GPM	
Metho	539.37 GPM	
Ĺ	Cancel Back Next	
		5
_		

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point2** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

L'écran affiche la valeur saisie pour le système de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

Chan	Ch5 Flow hi 2-point	Н	
Unit Metho	Please set flow rate1.		
	Cancel	Next	

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.
益 い	CAL\Calibrate Sens	or	
Char	Ch5 Flow hi 2-point	Н	
Unit	Slope 1.010	07	
Metho	Offset -1.135	50	
	Cancel SaveCal Ba	*	
		+	-

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

En sélectionnant « Annuler », vous effacerez les valeurs saisies et le M800 reviendra au menu Étalonnage.

Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Appuyez sur « Enregistrer » pour enregistrer les facteurs d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche les messages « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !) et « Please re-install sensor » (Veuillez réinstaller la sonde). Lorsque vous appuyez sur le bouton « Fait », le M800 revient au menu Étalonnage.

7.12 Étalonnage de la turbidité (InPro 8000)

Ouvrez le menu « Calibrer Capteur » (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : A\Cal\Calibrer Capteur).

后\CAL	Calibrate Sensor	
Chan	Turb. Turbidity	
Unit	NTU	
Method	Muti-Point 2-Point	
Verify	Edit Cal	
	É]

Vous pouvez accéder aux menus suivants :

 Unité : Vous pouvez choisir entre plusieurs unités de turbidité.
 Méthode : Sélectionnez la procédure d'étalonnage de votre choix (multipoint, procédé ou in situ).

7.12.1 Étalonnage multipoint

Sélectionnez la méthode d'étalonnage « Multi-Point ». Sélectionnez un étalonnage en 2, 3, 4 ou 5 points à l'aide du deuxième bouton de la ligne. L'étalonnage multipoint correspond à un étalonnage de la pente et du décalage.

REMARQUE : l'étalonnage multipoint démarre toujours avec la plus forte concentration, par ex. la valeur de turbidité.

La procédure suivante décrit la méthode d'étalonnage en 2 points avec deux solutions de référence. La méthode d'étalonnage en 3, 4 ou 5 points fonctionne avec 3, 4 ou 5 solutions de référence respectivement.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

	Calibrate Sensor	
Chan	Turb. Turbidity	
Unit	NTU	
Method	Multi-Point 2	Point
Verify	Edit	Cal
		5

Chan
Unit
Press "Next" when sensor is in
Netho
Carcel
Next

Placez la sonde dans la solution de référence qui présente la plus forte concentration, puis appuyez sur le bouton « Suivant ».

<u>ី</u> ដែ	CAL \Calibrate Sensor	
Chan	Turbidity Multi-Point]
Unit	Point2 0.000 NTU	
Metho	50.000 NTU	int
	Cancel Back Next	
		5

 \bigcirc

<u> </u>	CAL1Calibrate Sensor	
Char	Turbidity Multi-Point	
Unit	Point2 50.000 NTU	
Metho	50.000 NTU	int _
	Cancel Back Next	
		5

La deuxième valeur affichée à l'écran est celle mesurée par le transmetteur et la sonde dans les unités sélectionnées par l'utilisateur.

Appuyez sur le champ Point2 pour saisir le point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur \leftarrow pour accepter la valeur.

REMARQUE : pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la solution de référence (1 re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

Placez la sonde dans la solution de référence qui présente la plus faible concentration, puis appuyez sur le bouton « Next ».

읍)(CAL\Calibrate Sensor	
~	Turbidity Multi-Point]
Unit	Point1 0.000 NTU	
Metho	0.000 NTU	irk.
	Cancel Back Next	

Appuyez sur le champ Point1 pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

 \bigcirc

Clari Clari Unit Point 0.000 NTU Metho Carcel Back Nest **REMARQUE :** pour choisir une autre unité pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour revenir en arrière, appuyez sur le bouton « 0-9 ».

L'écran affiche la valeur saisie pour la solution de référence (1re ligne) et la valeur mesurée du M800 (2e ligne).

Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

<u>ី</u> ដែ	CAL	Calibrate S	ensor	
Chan	Turb	idity Multi-Point		1
Unan	S1	S=1000.0	O=0.0000	
Unit				
Metho				irt
	Car	ncel SaveCal	Back	
				÷

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage. Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler »

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étaionnage. Appuyez sur « Annuier » pour mettre fin à l'étaionnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étaionnage.

Chan	Turbidity Multi-Point	-
Unit Metho	Calibration Saved Successfully! Re- install sensor.	int
	Done	

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Dans tous les cas, le message « Veuillez réinstaller la sonde » s'affiche. Lorsque vous appuyez sur « Fait », le M800 revient au menu Étalonnage de la sonde.

7.12.2 Étalonnage procédé

Sélectionnez la procédure d'étalonnage « Process » (voir la section 7.12 « Étalonnage de la turbidité (InPro 8000) »). Un étalonnage procédé correspond à un étalonnage de la pente ou du décalage.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Turbidity Process Slope

Unit

"Enter" to capture the m

50.000 NTU

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et la fenêtre de menu si la voie concernée est sélectionnée dans la fenêtre.

Une fois la valeur de turbidité de l'échantillon déterminée, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

	METTLER	
	Turbidity Process Slope	
	Point1 50.00 NTU	
	50.000 NTU	
	Cancel Next	
151		Ø

Appuyez sur le champ **Point1** pour saisir la valeur de turbidité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

METTLER Turbidly Process Stope Calbration Sarved Successfully/ L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu. CAL\Calibrate S

Unit Method

7.12.3 Étalonnage in situ

Sélectionnez la procédure d'étalonnage « In-Situ » (voir la section 7.12.1 « Étalonnage de la turbidité »). Sélectionnez un étalonnage en 2, 3, 4 ou 5 points à l'aide du deuxième bouton de la ligne. L'étalonnage in situ correspond à un étalonnage de la pente et du décalage.

La procédure suivante décrit la méthode d'étalonnage en 2 points avec deux solutions de référence. La méthode d'étalonnage en 3, 4 ou 5 points fonctionne avec 3, 4 ou 5 solutions de référence respectivement

Appuyez sur le bouton Options pour modifier le gain : Low/Low (faible/faible) (valeur par défaut), Low/High (faible/élevé) ou High/High (élevé/élevé).

Plus le gain est élevé, plus l'étalonnage risque d'être interrompu à un niveau de turbidité plus élevé en raison de la saturation du signal. Dans ce cas, recommencez l'étalonnage avec un gain plus faible.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

	Turbidity In-Situ	
Unit	Press "Enter" to capture the measured value	
Metho	0.000 NTU	n
Optics		
J Å	Cancel L	

2-Point

-

Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « C » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre.

•	METTLER		
Turb			С
	0	NTU	
	0	FTU	
	0	EBC	
	0	mg/L	
ISM	*		^{\$\$}

Une fois la valeur de turbidité de l'échantillon déterminée, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

	Turbidity In-Situ	
	Point1 0.000 NTU	
	0.000 NTU	
	Cancel Next	6
151	M 🗶 🖓 🖌	3

Appuyez sur le champ **Point1** pour saisir la valeur de turbidité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

•	METTLER		
Turb			С
	0	NTU	
	0	FTU	
	0	EBC	
	0	mg/L	
ISM	*	Ľ	*\$
0			

Une fois la valeur de turbidité de l'échantillon déterminée, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

Prélevez un autre échantillon et appuyez sur le bouton ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « C » clignote dans la fenêtre d'accueil et de menu si la voie concernée est sélectionnée dans la fenêtre. ิล

Une fois la valeur de turbidité de l'échantillon déterminée, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

Appuyez sur le champ **Point2** pour saisir la valeur de turbidité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

Appulyaz sur la bautan « Eprogistrar » pour aprogistrar l'átaloppaga. Appulyaz sur « Appu

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.12.4 Étalonnage manuel (Modifier)

Dans le mode « Etalonnage Manuel», les valeurs pour le gain, la pente et le décalage sont saisies directement.

۱CAL	Calibrate Sensor	
Chan Unit Method	Turbid NTU Multi-Point	¥ 2-Point
Verify	Edit	Cal

Appuyez sur le bouton « Edit » (modifier) pour lancer l'étalonnage.

	Turbidity Edi	t	
Unit Metho	Options	Low/Low	int
	Cancel	Next	

Appuyez sur le champ « Options » pour modifier la valeur du gain : Low/Low (faible/faible) (valeur par défaut), Low/High (faible/élevé) ou High/High (élevé/élevé).

Plus le gain est élevé, plus l'étalonnage risque d'être interrompu à un niveau de turbidité plus élevé en raison de la saturation du signal. Dans ce cas, recommencez l'étalonnage avec un gain plus faible.

Appuyez sur le bouton « Suivant ».

	Turbidity Ex	át	
Chan	Slope	1000	
Unit	Offset	0.000	-
Meth	100	00.0 NTU	int
	Cancel	Save	

Appuyez sur le champ « Slope » pour modifier la valeur de la pente. Appuyez sur le champ « Offset » pour modifier la valeur du décalage.

La troisième ligne indique la valeur actuelle mesurée.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.13 Étalonnage de la turbidité (InPro 8600 i)

Ouvrez le menu « Calibrer Capteur » (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : CA\Calibrer Capteur).

Vous pouvez accéder aux menus suivants :

Unité :Vous pouvez choisir entre plusieurs unités de turbidité.Méthode :Sélectionnez l'étalonnage procédé.

7.13.1 Étalonnage procédé

Sélectionnez la procédure d'étalonnage « Process » (voir la section 7.13 « Étalonnage de la turbidité (InPro 8600 i) »). Un étalonnage procédé correspond à un étalonnage de la pente ou du décalage.

Appuyez sur le bouton « Cal » pour lancer l'étalonnage.

Turbidity

Slope

Cal

CAL \Calibrate Ser

NTU90

Process

Char

Unit Methor

> Prélevez un échantillon et appuyez de nouveau sur ← pour mémoriser la mesure actuelle. Pour indiquer que le procédé d'étalonnage est en cours, un « P » clignote dans la fenêtre d'accueil et la fenêtre de menu si la voie concernée est sélectionnée dans la fenêtre.

Une fois la valeur de turbidité de l'échantillon déterminée, appuyez à nouveau sur l'icône de l'étalonnage dans la fenêtre de menu (voir la section 3.4.2 « Commandes »).

Appuyez sur le champ **Point1** pour saisir la valeur de turbidité de l'échantillon. Appuyez sur « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.14 Vérification de la sonde

Ouvrez le menu « Calibrer Capteur » (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer Capteur) et choisissez la voie à étalonner

iCAL)	Calibrate Sens	or		
Chan	CHAN_1 p	H/ORP		
Unit	pН			
Method	1-Point			
Option	Options			
Verify			Cal	
			ţ	

Appuyez sur le bouton « Vérifier » pour lancer la vérification.

Le signal mesuré pour la mesure principale et secondaire est exprimé dans les unités de base (principalement électriques). Les facteurs d'étalonnage du transmetteur sont utilisés lors du calcul de ces valeurs.

Appuyez sur le bouton ← pour revenir au menu d'étalonnage.

7.15 Modification des constantes d'étalonnage des capteurs de débit

Cette fonction est la méthode d'étalonnage la plus utilisée pour les capteurs de débit

Ouvrez le menu « Calibrer Capteur » (voir la section 7.1 « Étalonnage de la sonde » ; CHEMIN D'ACCÈS : 🗥 \ Cal \ Calibrer Capteur) et sélectionnez la voie de votre choix.

ChALLCalbrate Sensor
Chan CHAN_5 Flow Hi
Unit GPM
Method 1-Point
Verify Edit Cal

Appuyez sur le bouton « Edit ».

Chall Callbrate Sensor Char Stope 10107 Unit Metho Cfinet -11350

Appuyez sur le champ **Slope** pour modifier la valeur de la pente. Un clavier apparaît pour modifier la valeur. Appuyez sur \leftarrow pour accepter la valeur.

Appuyez sur le champ **Offset** pour modifier la valeur du décalage. Un clavier apparaît pour modifier la valeur. Appuyez sur \leftarrow pour accepter la valeur.

En sélectionnant « Annuler », vous effacerez les valeurs saisies et le M800 reviendra au menu Étalonnage.

Appuyez sur « Enregistrer » pour enregistrer les facteurs d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche les messages « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !) et « Veuillez réinstaller la sonde ». Lorsque vous appuyez sur le bouton « Fait », le M800 revient au menu Étalonnage.

Quittez le menu « Calibrer Capteur ».

Appuyez sur 🖆. Pour revenir à la fenêtre de menu, appuyez sur 🖀.

7.16 Étalonnage électronique des sondes UniCond2e

Le M800 permet d'étalonner ou de vérifier les circuits électroniques des sondes de conductivité Unicond2e. Les sondes Unicond2e sont équipées de 3 circuits dont la plage de résistance doit être étalonnée. Ces circuits de mesure sont étalonnés à l'aide du module d'étalonnage des sondes de conductivité ISM THORNTON, référence 58 082 305, et du connecteur Y fourni. Avant de commencer l'étalonnage, retirez la sonde du procédé, rincez-la à l'eau déionisée et laissez-la sécher complètement. Connectez le transmetteur et la sonde à la source d'alimentation au moins 10 minutes avant de lancer l'étalonnage pour stabiliser la température de fonctionnement des circuits.

Calibrate Sensor	•
Calibrate Electronics	•
Calibrate Meter	•
Calibrate Analog Outputs	•
Calibrate Analog Inputs	•
< 1/2 >	5

Appuyez sur le bouton « Cal ».

Ouvrez le menu « Calibrate Electronics » (étalonnage électronique).

Appuyez sur le bouton « Chan_x » et sélectionnez la voie à étalonner.

Choisissez entre Verify pour vérifier ou Cal pour étalonner les circuits électroniques de la sonde.

Reportez-vous au module d'étalonnage des sondes de conductivité ISM THORNTON (référence 58 082 305) pour des instructions détaillées en matière d'étalonnage et de vérification.

7.17 Étalonnage du transmetteur

Bien qu'en général il ne soit pas nécessaire de procéder au réétalonnage du transmetteur, sauf si le menu « Calibration Verification » (vérification de l'étalonnage) indique un fonctionnement non conforme du transmetteur en raison de conditions extrêmes, il peut s'avérer nécessaire de procéder à une vérification ou à un réétalonnage périodique pour satisfaire aux exigences de qualité. L'étalonnage de la fréquence nécessite un étalonnage en deux points. Il est recommandé que le point 1 soit situé au niveau du seuil minimal de la plage de fréquence et le point 2 au niveau du seuil maximal.

Appuyez sur le bouton « Cal ».

Ouvrez le menu « Calibrer Transm ».

CAL	
Calibrate Sensor	►
Calibrate Electronics	•
Calibrate Meter	•
Calibrate Analog Outputs	•
Calibrate Analog Inputs	•
< 1/2 >	5

7.17.1 Résistance (sondes analogiques uniquement)

Le transmetteur est doté de cinq (5) plages de mesure internes. Chaque plage de résistance (consistant chacune en un étalonnage en deux points) et de température est étalonnée séparément.

Le tableau ci-dessous indique les valeurs de résistance de toutes les plages d'étalonnage.

Plage	Point 1	Point 2	Point 4
Résistivité 1	1,0 Mohm	10,0 Mohms	-
Résistivité 2	100,0 Kohms	1,0 Mohm	-
Résistivité 3	10,0 Kohms	100,0 Kohms	-
Résistivité 4	1,0 Kohms	10,0 Kohms	-
Résistivité 5	100 Ohms	1,0 Kohms	-
Température	1 000 Ohms	3,0 Kohms	66 Kohms

Appuyez sur le champ « Résistance ».

Appuyez sur le bouton « Cal ».

\	ferify	Cal
		IJ
ាំរ	CAL1Calibrate Me	ter
Chan	Resistance5	Н

< Resistance5 >

1 C2 hi

ALCAL \Calk

Desistance

Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

<u> </u>	CAL\Calibrate Meter	
	Resistance5 H	
Uhan	Connect source 1 to input terminals and then press "Next".	
`	Cancel	
		-

Connectez la source 1 aux terminaux d'entrée. Chaque plage de résistance requiert un étalonnage en deux points.

Appuyez sur le bouton « Suivant » pour continuer.

Appuyez sur le champ « Point1 » pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur le bouton ← pour modifier la valeur concernée.

La deuxième ligne indique la valeur actuelle.

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Chan Sape 1.2300 Offset 0.1230

Appuyez sur le champ « Point2 » pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur ← pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

L'écran indique la valeur de la pente et du décalage comme résultats de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.17.2 Température (sondes analogiques uniquement)

L'étalonnage de la température s'effectue en trois points. Le tableau de la section 7.17.1 indique les valeurs de résistance de ces trois points.

Appuyez sur le champ « Tension ».

Appuyez sur le bouton « Cal ».

an	Temperature
	Connect source 1 to input terminals and then press "Next".
1	Cancel

Connectez la source 1 aux terminaux d'entrée. Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

Appuyez sur le champ « Point1 » pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur le bouton ← pour modifier la valeur concernée.

La deuxième ligne indique la valeur actuelle.

n	Temperature
	Connect source 2 to input terminals and then press "Next".
3	Cancel Back Next

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Répétez le processus d'étalonnage du Point1 pour le Point2 et le Point3.

<u>6</u> 10	CAL \Ca	librate Meter		
Charl	Tempera	ature	Н	
Unan	А	1.2300		
	в	0.1230		
	¢	0.4560		
Ĩ	Cancel	SaveCal Back		
				5

L'écran indique le résultat de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.17.3 Tension

L'étalonnage de la tension s'effectue en deux points.

Appuyez sur le champ « Tension ».

Appuyez sur le bouton « Cal ».

[Witage	н
han.	Connect source 1 to input t and then press "Next	erminals

Connectez la source 1 aux terminaux d'entrée. Appuyez sur le bouton « Suivant » pour lancer l'étalonnage.

間 10	CAL\Calibrate Meter	
Chan	Voltage	
	Point1 200.00 mV	
	200.00 mV	
	Carrel Back Next	╞
		"

Appuyez sur le champ « Point1 » pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur 4 pour accepter la valeur.

La deuxième ligne indique la valeur actuelle.

n	Voltage
	Connect source 2 to input terminals and then press "Next".
-	Cancel Back Next

Connectez la source 2 aux terminaux d'entrée.

Appuyez sur le bouton « Suivant » pour continuer.

Répétez le processus d'étalonnage du Point1 pour le Point2 et le Point3.

L'écran indique le résultat de l'étalonnage.

Appuyez sur le bouton « Enregistrer » pour enregistrer l'étalonnage. Appuyez sur « Annuler » pour mettre fin à l'étalonnage. Utilisez la flèche de retour pour revenir à l'étape précédente de la procédure d'étalonnage.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !). Lorsque vous appuyez sur « Fait », le M800 revient à la fenêtre de menu.

7.17.4 Courant

L'étalonnage du courant s'effectue en deux points.

Suivez les instructions de la section 7.17.3 « Tension » pour procéder à l'étalonnage du courant.

7.17.5 Rg

L'étalonnage du « Rg Diagnostic » s'effectue en deux points.

Suivez les instructions de la section 7.17.3 « Tension » pour procéder à l'étalonnage du Rg.

7.17.6 Rr

L'étalonnage du « Rr Diagnostic » s'effectue en deux points.

Suivez les instructions de la section 7.17.3 « Tension » pour procéder à l'étalonnage du Rr.

7.17.7 Étalonnage du débitmètre

Appuyez sur le bouton « Cal ».

Ouvrez le menu « Calibrer Transm ».

1CAL	
Calibrate Sensor	•
Calibrate Electronics	•
Calibrate Meter	•
Calibrate Analog Outputs	•
Calibrate Analog Inputs	•
< 1/2 >	5

鄙ICA	L\Calibrate Meter	
Chan	CHAN_5 Flow hi	
	Frequency	
Ver	fy	Cal
		Ę

Appuyez sur le bouton « Chan_x » et sélectionnez la voie à étalonner.

Appuyez sur « Cal » pour lancer l'étalonnage.

Connectez un générateur de fréquence aux terminaux xIN et xGND, puis appuyez sur « Suivant ».

Ajustez le générateur de fréquence pour le premier point d'étalonnage, puis appuyez sur « Suivant ».

Appuyez sur le champ **Point1** pour saisir la valeur du point d'étalonnage. Un clavier apparaît pour modifier la valeur. Appuyez sur le bouton ← pour accepter la valeur.

REMARQUE : pour choisir une autre unité de mesure pour la valeur saisie sur le clavier, appuyez sur le bouton « U ». Pour rouvrir le clavier, appuyez sur « 0-9 ».

Appuyez sur « Suivant ».

Ajustez le générateur de fréquence pour le deuxième point d'étalonnage, puis appuyez sur « Suivant ».

Appuyez sur le champ **Point2** pour saisir la valeur du point d'étalonnage.

Un clavier apparaît pour modifier la valeur. Appuyez sur le bouton ← pour accepter la valeur.

L'écran indique la valeur de la pente et la valeur du décalage comme résultats de l'étalonnage.

Enregistrer :	Enregistre les nouvelles valeurs d'étalonnage et mémorise l'historique d'étalonnage
Cancel :	Annule la procédure d'étalonnage et retourne au menu « Calibrate Sensor ».
Retour :	Revient à l'étape précédente de la procédure d'étalonnage.

Appuyer sur « Fait » pour retourner au menu d'étalonnage.

7.18 Vérification du débitmètre

Ouvrez le mode d'étalonnage comme indiqué dans la section 7 « Étalonnage ».

Ouvrez le menu « Calibrer Transm » (étalonnage du transmetteur).

Appuyez sur le bouton « Chan_x » et sélectionnez la voie à étalonner.

Appuyez sur le bouton « Verifier » pour lancer la vérification.

Connectez un générateur de fréquence aux terminaux xIN et xGND, puis appuyez sur « Suivant ».

La fréquence mesurée s'affiche.

Appuyez sur ← pour revenir au menu Étalonnage.

7.19 Étalonnage des sorties analogiques

CHEMIN D'ACCÈS : 🗥 \ CAL \ Calibrer Sorties Ana

CAL \ Calib	rate Aou	ıt	
Analog Outputs			
#1		#5	
#2		#6	
#3		#7	
#4		#8	
			-

Chaque sortie analogique peut être étalonnée à 4 et 20 mA. Sélectionnez le signal de sortie à étalonner en appuyant sur le bouton #1 pour le signal de sortie 1, le bouton #2 pour le signal de sortie 2, etc.

Connectez un milliampèremètre précis au terminal de sortie analogique, puis ajustez le nombre à 5 chiffres affiché à l'écran pour régler la sortie sur 4,00 mA. Répétez l'opération pour 20,00 mA.

À mesure qu'on augmente/diminue le nombre à 5 chiffres, le courant de sortie augmente/ diminue. Par conséquent, des changements grossiers peuvent être apportés au courant de sortie en modifiant les chiffres des centaines et des milliers ; des changements précis peuvent être effectués en modifiant les chiffres des dizaines et des unités.

Une fois ces valeurs ajustées, appuyez sur le bouton « Suivant » pour lancer le calcul des résultats de l'étalonnage.

L'écran indique la valeur de la pente et du point zéro comme résultats de l'étalonnage du signal de sortie.

Si vous sélectionnez « Annuler », les valeurs saisies seront supprimées. Si vous appuyez sur « Enregistrer », les valeurs saisies seront validées.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !).

7.20 Étalonnage des entrées analogiques

CHEMIN D'ACCÈS : 🖀 \ CAL \ Calibrer Entrées Ana

Chaque entrée analogique peut être étalonnée à 4 et 20 mA. Sélectionnez le signal d'entrée à étalonner en appuyant sur le bouton #1.

Connectez un signal de 4 mA aux terminaux d'entrée analogique. Appuyez sur le bouton « Suivant ».

Saisissez la valeur adéquate pour le signal d'entrée (Point1).

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

Connectez un signal de 20 mA aux terminaux d'entrée analogique. Appuyez sur le bouton « Suivant ».

Saisissez la valeur adéquate pour le signal d'entrée (Point2)

Appuyez sur « Suivant » pour poursuivre l'étalonnage.

L'écran indique la valeur de la pente et du point zéro comme résultats de l'étalonnage du signal d'entrée.

Si vous sélectionnez « Annuler », les valeurs saisies seront supprimées. Si vous appuyez sur « Enregistrer », les valeurs saisies seront validées.

Si vous sélectionnez « Enregistrer », l'écran affiche le message « Calibration Saved Successfully! » (Sauvegarde de l'étalonnage réussie !).

7.21 Maintenance

CHEMIN D'ACCÈS : 🗥 \ Maintenance

Les voies du transmetteur M800 peuvent être activées ou désactivées manuellement en mode « Maintien ». Vous pouvez également lancer ou arrêter manuellement un cycle de nettoyage.

Sélectionnez la voie que vous souhaitez régler manuellement sur « Maintien ».

Appuyez sur le bouton « Start » en face de **Manual HOLD** pour activer le mode « Maintien » de la voie sélectionnée. Pour désactiver le mode « Maintien », appuyez sur le bouton « Stop » situé à la place du bouton « Start ».

Appuyez sur le bouton « Start » en face de **Manual Clean** pour modifier le mode pour lancer un cycle de nettoyage. Pour désactiver le mode, appuyez sur le bouton « Stop » situé à la place du bouton « Start ».

8 Configuration

Pour consulter la structure du menu, reportez-vous à la section 3.4.1 « Structure du menu ».

8.1 Mesure

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Mes

8.1.1 Config des voies

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Mes \ Config voie

Sélectionnez la voie (**Channel**) à configurer en appuyant sur le bouton #1 pour la voie 1, le bouton #2 pour la voie 2, etc.

Appuyez sur le champ de saisie droit de la ligne du réglage pour **Channel**. Vous pouvez sélectionner un paramètre correspondant à la voie que vous avez choisie en appuyant sur le champ approprié.

Lorsque « Auto » est sélectionné, le transmetteur M800 reconnaît automatiquement le type de sonde. La voie peut également être définie sur un certain paramètre de mesure, selon le type de transmetteur.

Paramètres de mesures des versions à 2 et 4 voies

Paramètre de mesures		Туре
pH/ORP	= pH et redox	Eau, Process
pH/pNa	= pH et redox (avec électrode de pH/pNa)	Process
UniCond2e	= conductivité 2 électrodes	Eau, Process
UniCond4e	= conductivité 4 électrodes	Eau, Process
Cond4e	= conductivité 4 électrodes	Eau, Process
$\overline{O_2}$ hi	= oxygène dissous ou oxygène gazeux (ppm)	Process
	= oxygène dissous ou oxygène gazeux (ppb)	Process
O ₂ Trace	= oxygène dissous ou oxygène gazeux	Process
O ₂ Opt	= oxygène dissous optique	Process
O ₂ Io THORNTON	= oxygène dissous	Eau
CO ₂	= dioxyde de carbone dissous	Process
CO ₂ hi	= dioxyde de carbone dissous destiné aux boissons	Process
TOC	= carbone organique total	Eau
$\overline{O_3}$	= ozone dissous	Eau
Flow hi, low, Type2	= Débit	Eau

Paramètres de mesures des versions à 1 voie, sondes analogiques

Paramètre de mesures

pH/ORP	= pH et redox
Cond2e	= conductivité 2 électrodes
Cond4e	= conductivité 4 électrodes
O₂ hi	 – oxygène dissous ou oxygène gazeux (ppm)
Turbidity	= Turbidité

 IChannel Setup

 Channel
 #1
 Auto

 Descriptor
 CHAN_1

 M1-M2
 pH
 *C

 M3-M4
 DLI
 Veits

 M6-M6
 ACT
 TTM

87

Paramètres de mesures des modèles à 1 voie, sondes ISM

Paramètre de mesures

pH/ORP	= pH et redox
pH/pNa	= pH et redox (avec électrode de pH/pNa)
UniCond2e	= conductivité 2 électrodes
UniCond4e	= conductivité 4 électrodes
Cond4e	= conductivité 4 électrodes
O₂ hi	 – oxygène dissous ou oxygène gazeux (ppm)
0 ₂ lo	 – oxygène dissous ou oxygène gazeux (ppb)
O ₂ Trace	 oxygène dissous ou oxygène gazeux
O ₂ Opt	= oxygène dissous optique
CO ₂	= dioxyde de carbone dissous
CO ₂ hi	= dioxyde de carbone dissous
Turbidity	= Turbidité

Saisissez le nom de la voie (6 caractères maximum) en appuyant sur le champ **Descriptor**. Le nom de la voie sera toujours affiché, si la voie doit être sélectionnée. Son nom sera également affiché sur la fenêtre d'accueil et la fenêtre de menu si le mode d'affichage (voir la section 8.1.3 « Mode d'affichage ») est réglé sur « 1 voie » ou « 2 voies ».

Sélectionnez l'une des mesures **M1 à M6** (par ex. le bouton gauche pour définir la mesure M1 et le bouton droit pour définir la mesure M2).

Sélectionnez dans le champ de saisie le paramètre de mesure à afficher.

REMARQUE : en dehors des paramètres « pH », « O₂ », « T », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être associées aux mesures.

Choisissez le facteur de plage (**Range factor**) de la mesure. Seuls certains paramètres permettent de modifier la plage.

Le menu **Resolution** permet de régler la résolution des mesures. Ce réglage ne garantit pas la précision de la mesure. Les réglages possibles sont les suivants : 1 ; 0,1 ; 0,01 ; 0,001.

Sélectionnez le menu **Filtre**. Vous pouvez sélectionner la méthode de calcul de la moyenne (filtre antiparatistes) de la mesure. Les options disponibles sont : « Spécial » (option par défaut), « Bas », « Moyen », « Haut », et « Aucune ».

None = aucune moyenne ou aucun filtre

Low = équivaut à une moyenne mobile à 3 points

Medium = équivaut à une moyenne mobile à 6 points

High = équivaut à une moyenne mobile à 10 points

Special = la moyenne dépend de la modification du signal (normalement moyenne de type « High », mais moyenne de type « Low » pour les modifications importantes du signal d'entrée)

8.1.2 Mesures dérivées

Le M800 permet de configurer les mesures dérivées (total, différence, rapport) en fonction de deux mesures telles que le pH, la conductivité, etc. Pour obtenir les mesures dérivées, configurez d'abord les deux principales mesures qui seront utilisées pour calculer la mesure dérivée. Définissez les mesures principales comme si elles étaient des mesures distinctes. Puis, choisissez l'unité pour la mesure dérivée de la première voie. Le transmetteur M800 affichera le menu supplémentaire **Other Channel** pour sélectionner la deuxième voie avec sa mesure correspondante.

Il existe trois mesures dérivées supplémentaires pour une configuration avec deux sondes de conductivité : « %Rej » (% de rejet), « pH Cal » (pH calculé) et « CO₂ Cal » (CO₂ calculé).

8.1.2.1 Mesure du pourcentage de rejet

Pour les applications d'osmose inverse (RO), le pourcentage de rejet est mesuré avec la conductivité afin de déterminer le taux d'impuretés retirées du produit ou de l'eau purifiée par rapport à la quantité totale d'impuretés dans l'eau d'alimentation. La formule pour obtenir le pourcentage de rejet est la suivante :

[1 – (Produit/Alimentation)] X 100 = % de rejet

Les valeurs indiquées pour le produit et l'alimentation correspondent aux valeurs de conductivité mesurées par les sondes respectives. La figure A présente le schéma d'une installation à osmose inverse avec les sondes en place pour le pourcentage de rejet.

REMARQUE : la sonde de contrôle du produit doit être installée sur la voie mesurant le pourcentage de rejet. Si la sonde de conductivité du produit est installée sur la voie 1, le pourcentage de rejet doit être mesuré sur la voie 1.

8.1.2.2 pH calculé (applications pour centrales électriques uniquement)

Le pH calculé peut être obtenu avec une grande précision à partir des valeurs de conductivité spécifique et cationique en centrale électrique quand le pH est situé entre 7,5 et 10,5 du fait de l'ammoniaque ou des amines et quand la conductivité spécifique est nettement supérieure à la conductivité cationique. Ce calcul n'est pas effectué lorsque les phosphates sont en forte concentration. Le M800 utilise cet algorithme lorsque la mesure « pH Cal » est sélectionnée.

Le pH calculé doit être configuré sur la même voie que la conductivité spécifique. Par exemple, configurez la mesure M1 sur CHAN_1 pour la conductivité spécifique, la mesure M1 sur CHAN_2 pour la conductivité cationique, la mesure M2 sur CHAN_1 pour le pH calculé et la mesure M3 sur CHAN_1 pour la température. Sélectionnez le mode de compensation « Ammonia » (ammoniaque) pour la mesure M1 définie sur CHAN_1 et « Cation » (cationique) pour la mesure M1 définie sur CHAN_2.

REMARQUE : si l'opération ne se déroule pas dans les conditions recommandées, il est nécessaire de mesurer le pH avec une électrode de verre pour obtenir une valeur précise. D'autre part, quand les conditions de l'échantillon sont conformes aux valeurs indiquées ci-dessus, le pH calculé fournit un standard fiable pour l'étalonnage en un point de la mesure de pH de l'électrode.

8.1.2.3 CO₂ calculé (applications pour centrales électriques uniquement)

Le dioxyde de carbone peut être calculé à partir des mesures de conductivité cationique et de conductivité cationique dégazée pour des échantillons de centrales électriques, en utilisant les tableaux ASTM Standard D4519. Le M800 possède ces tableaux en mémoire et les utilise quand les unités de CO₂ CAL sont sélectionnées.

Le CO₂ calculé doit être configuré sur la même voie que la conductivité cationique. Par exemple, configurez la mesure M1 sur CHAN_1 pour la conductivité cationique, la mesure M1 sur CHAN_2 pour la conductivité cationique dégazée, la mesure M2 sur CHAN_1 pour le CO₂ calculé et la mesure M2 sur CHAN_2 pour la température. Choisissez le mode de compensation de température « Cation » pour les deux mesures de conductivité.

8.1.3 Mode d'affichage

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Mes \ Mode Affichage

Appuyez sur le champ **Disp Mode** et choisissez les mesures à afficher sur la fenêtre d'accueil et la fenêtre de menu.

Choisissez d'afficher les mesures pour la voie 1 ou la voie 2, et choisissez d'afficher 4 ou 8 mesures.

REMARQUE : les mesures affichées pour la voie 1 ou la voie 2 sont définies dans le menu « Config voie » (voir la section 8.1.1 « Config des voies »). Si vous avez choisi « 1-voie », les mesures M1 à M4 de chaque voie seront affichées. Si vous avez choisi « 2-voies », les mesures M1 et M2 de chaque voie seront affichées.

Des réglages supplémentaires peuvent être effectués si l'option « 4 mesures » ou « 8 mesures » a été sélectionnée.

Sélectionnez la Page de la fenêtre d'accueil ou de la fenêtre de menu où sera affichée la mesure.

Choisissez la Ligne de la page correspondante où sera affichée la mesure.

Sélectionnez la **Voie** qui doit s'afficher sur la ligne de la page associée en appuyant sur le champ correspondant.

Choisissez la mesure de la voie sélectionnée qui devra s'afficher à l'aide du paramètre Measure.

REMARQUE : en dehors des mesures « pH », « O_2 », « T », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être affichées.

8.1.4 Définition des paramètres

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Mes \ Paramétrage

Les paramètres de mesure et d'étalonnage peuvent être définis pour les paramètres de pH, de conductivité, d'oxygène et de débit.

Ouvrez le menu Voie pour sélectionner une voie.

Différents paramètres de mesure et d'étalonnage s'affichent en fonction de la voie sélectionnée et de la sonde attribuée. Le paramètre de stabilité redox n'est disponible que pour la sonde redox.

Lisez les explications suivantes pour en savoir plus sur les différents paramètres existants.

8.1.4.1 Paramètres de conductivité

Sélectionnez la mesure de votre choix (M1-M6). Pour en savoir plus sur les mesures, consultez la section 8.1.1 « Config des voies ».

Si la mesure sélectionnée peut être compensée par la température, vous pouvez sélectionner une méthode de compensation.

REMARQUE : pendant l'étalonnage, vous devez également sélectionner une méthode de compensation. (voir les sections 7.2 « Étalonnage des sondes UniCond2e et UniCond4e (Sondes ISM uniquement) » et 7.3 « Étalonnage des sondes Cond2e ou Cond4e »).

Appuyez sur **Compen.** pour sélectionner la méthode de compensation de la température souhaitée. Vous pouvez choisir entre « Aucune », « Standard », « Light 84 », « Std 75 °C », « Linéaire 25 °C » (linéaire 25 °C), « Linéaire 20 °C », « Glycol.5 », « Glycol.1 », « Cation », « Alcool » et « NH₃ » (ammoniaque).

Avec « Aucune », la valeur de conductivité mesurée n'est pas compensée. La valeur non compensée sera affichée et traitée.

La compensation « Standard » comprend une compensation des effets de la pureté élevée non linéaire ainsi que des impuretés des sels neutres traditionnels. Elle est conforme aux normes ASTM D1125 et D5391.

La compensation « Light 84 » correspond aux résultats des recherches sur l'eau pure du Dr T.S. Light publiées en 1984. À n'employer que si votre établissement a établi des normes sur la base de ce travail.

L'option de compensation « Std 75 °C » est l'algorithme de compensation standard avec la référence de 75 °C. Cette compensation peut être privilégiée pour la mesure de l'eau ultrapure (UPW) à une température élevée (la résistivité de l'eau ultrapure compensée à 75 °C est 2,4818 Mohm-cm).

La compensation « Linéaire 25 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 25 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation « Linéaire 20 °C » ajuste la lecture au moyen d'un coefficient ou facteur exprimé en « % par °C » (écart par rapport à 20 °C). À n'utiliser que si la solution a un coefficient de température linéaire bien défini. La valeur usine par défaut est de 2,0 %/°C.

La compensation « Glycol.5 » correspond aux caractéristiques thermiques de 50 % d'éthylène glycol dans de l'eau. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

∰۱۱Pa	ameter Setting
Channel	CHAN_1 pH/ORP
Buffer Tab	MT-9
Stability	Medium
IP pH	7.0
STC pH/°C	0.00
	L L

Charnel CHAN_1 Cond4e Messure Mt S/cm Compen. Standard La compensation « Glycol1 » correspond aux caractéristiques thermiques de l'éthylène glycol 100 %. Les mesures compensées peuvent largement dépasser 18 Mohm-cm.

La compensation « Cation » est utilisée dans des applications de l'industrie de l'énergie afin de mesurer l'échantillon après un échangeur cationique. Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence d'acides.

La compensation « Alcool » correspond aux caractéristiques thermiques d'une solution contenant 75 % d'alcool isopropylique dans l'eau pure. Les mesures compensées basées sur cette solution peuvent dépasser 18 Mohm-cm.

La compensation « NH_3 » est utilisée pour les applications de l'industrie de l'énergie pour la conductivité spécifique mesurée sur des échantillons grâce à un traitement avec de l'eau contenant de l'ammoniaque et/ou de l'ETA (éthanolamine). Elle tient compte des effets de la température sur la dissociation de l'eau pure en présence de ces bases.

REMARQUE : si vous avez sélectionné le mode de compensation « Linéaire 25 °C » ou « Linéaire 20 °C », vous pouvez modifier le coefficient d'ajustement de la valeur. Dans ce cas, un champ de saisie supplémentaire s'affichera.

Appuyez sur le champ Coef. pour ajuster le coefficient ou le facteur de compensation.

8.1.4.2 Paramètres de pH

 IParameter
 Setting

 Channel
 CHAN_1
 pH/CRP

 Buffer Tab
 MT-9
 Stability

 Stability
 Medium

 P
 pH
 7.00

 STC
 pH/*C
 0.00

Si une électrode de pH est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou modifier les paramètres « Table Tampons », « Stabilité », « IP », « STC » et « Calibration temperature », ainsi que l'unité de la pente et/ou du point zéro. Les mêmes paramètres s'afficheront si le mode « pH/ORP » (pH/redox) a été défini pendant la configuration des voies.

Sélectionnez le tampon via le paramètre Table Tampons.

Pour la reconnaissance automatique du tampon lors de l'étalonnage, sélectionnez le jeu de solutions tampons utilisé : Mettler-9, Mettler-10, NIST Tech, NIST Std = JIS Std, HACH, CIBA, MERCK, WTW, JIS Z 8802 ou Aucun. Voir 17 « Tableaux de tampons » pour les valeurs des tampons. Si la fonction de tampon automatique n'est pas utilisée ou si les tampons disponibles diffèrent des tampons ci-dessus, sélectionnez « Aucune ».

REMARQUE : pour les électrodes de pH à double membrane (pH/pNa), seul le tampon Na+ 3,9M (voir la section 17.2.1 « Tampons pH/pNa Mettler (Na+ 3,9M) ») est disponible.

Sélectionnez la stabilité (**Stabilité**) requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Bas », « Moyen » ou « Strict » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Si le paramètre de stabilité est réglé sur « Medium » (paramètre par défaut), la déviation du signal doit être inférieure à 0,8 mV sur un intervalle de 20 secondes afin que le transmetteur le considère comme stable. L'étalonnage s'effectue à partir de la dernière mesure. Si le critère n'est pas satisfait dans les 300 secondes, l'étalonnage est interrompu et le message « Étalonnage non terminé » s'affiche.

Modifiez le paramètre IP pH.

IP correspond à la valeur du point isothermique (par défaut = 7,000 pour la plupart des applications). En cas de compensation spécifique ou pour une valeur de tampon interne non standard, cette valeur peut être modifiée.

Modifiez la valeur du paramètre STC pH/°C.

STC représente le coefficient de température de la solution en pH/°C par rapport à la température définie. (par défaut = 0,000 pH/°C pour la plupart des applications). Pour l'eau pure, une valeur de -0,016 pH/°C doit être utilisée. Pour des échantillons de centrales électriques à faible conductivité, proche de 9 pH, une valeur de -0,033 pH/°C doit être utilisée.

Si la valeur du STC est \neq 0,000 pH/°C, un champ supplémentaire s'affichera pour saisir la température de référence.

La valeur pour **pH Ref Temperature** indique la température de référence à laquelle correspond la compensation de température de la solution. La valeur affichée et le signal de sortie renvoient à cette température. La température de référence la plus courante est 25 °C.

8.1.4.3 Paramètres de mesure de l'oxygène basés sur des sondes ampérométriques

습۱۱Pa	rameter Setting	
Channel	CHAN_1 02 hi	
Cal Pressure	1013.0 mbar	
ProcPress [Options	
ProcCalPress	ProcPress	
Stability	Auto	
< 1/2	>	ţ

Si une sonde à oxygène ampérométrique est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou modifier les paramètres « Pression Cal », « Pression Proc », « Press Cal/ Proc », « Stabilité », « Salinité », « Humidité Rel », « Mes Upol » et « Verif Upol ». Les mêmes paramètres s'afficheront si les paramètres « O_2 hi », « O_2 lo » ou « O_2 trace » ont été définis pendant la configuration des voies.

Saisissez la valeur pour la pression d'étalonnage via le paramètre Pression Cal.

REMARQUE : pour modifier l'unité de la pression d'étalonnage, appuyez sur « U » sur le clavier affiché à l'écran.

Appuyez sur le bouton « Option » en face du paramètre **Pression Proc** et sélectionnez la méthode d'application de la pression du procédé en choisissant le **Type**.

Vous pouvez saisir la pression du procédé appliquée en sélectionnant « Edit » ou vous pouvez la mesurer par le biais de l'entrée analogique du M800 en choisissant « Ain_1 ».

Si l'option « Edit » (modifier) a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option « Ain_1 » a été sélectionnée, deux champs de saisie s'affichent pour saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

La pression appliquée doit être définie pour l'algorithme d'étalonnage procédé. Sélectionnez la pression via le paramètre **Press Cal/Proc**. Pour l'étalonnage procédé, la valeur de la pression de procédé (« Pression Proc ») ou de la pression d'étalonnage (« Pression Cal ») peut être utilisée.

Sélectionnez la stabilité (**Stabilité**) requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Auto » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

La salinité (Salinité) de la solution mesurée peut être modifiée.

De plus, l'humidité relative (bouton **Humidité Rel**) du gaz d'étalonnage peut également être définie. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques dans le mode Mesure via le paramètre **Mes Upol**. Pour des valeurs saisies entre 0 mV et -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -674 mV.

Vous pouvez modifier la tension de polarisation des sondes à oxygène ampérométriques via le paramètre **Verif Upol**. Pour des valeurs saisies entre 0 mV et -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -500 mV. Si la valeur saisie est inférieure à -550 mV, la sonde connectée sera réglée sur une tension de polarisation de -674 mV.

REMARQUE : au cours d'un étalonnage procédé, on utilisera la tension de polarisation « Mes Upol » définie dans le mode Mesure.

REMARQUE : si l'on exécute un étalonnage en un point, le transmetteur envoie à la sonde la tension de polarisation valable pour l'étalonnage. si les tensions de polarisation pour le mode Mesure et le mode Étalonnage sont différentes, le transmetteur attend 120 secondes avant de commencer l'étalonnage. Dans ce cas, le transmetteur continuera également de fonctionner 120 secondes après la fin de l'étalonnage, jusqu'à ce qu'il passe en mode « Maintien », avant de revenir au mode Mesure.

8.1.4.4 Paramètres de mesure de l'oxygène basés sur des sondes optiques

Si une sonde à oxygène optique est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou modifier les paramètres « Pression Cal », « Pression Proc », « Press Cal/ Proc», « Stabilité », « Salinité », « Humidité Rel », « Sample Rate », « Mode LED » et « Toff ». Les mêmes paramètres s'afficheront si le paramètre « Optical O_2 » a été défini pendant la configuration des voies.

Saisissez la valeur pour la pression d'étalonnage via le paramètre Pression Cal.

Appuyez sur le bouton « Option » en face du paramètre **Pression Proc** et sélectionnez la méthode d'application de la pression du procédé en appuyant sur le bouton **Type**.

Vous pouvez saisir la pression du procédé appliquée en sélectionnant « Edit » ou vous pouvez la mesurer par le biais de l'entrée analogique du M800 en choisissant « Ain_1 ».

Si l'option « Edit » (modifier) a été choisie, un champ de saisie s'affiche pour saisir la valeur manuellement. Si l'option « Ain_1 » a été sélectionnée, deux champs de saisie s'affichent pour saisir la valeur de départ (4 mA) et la valeur de fin (20 mA) de la plage pour le signal d'entrée de 4 à 20 mA.

La pression appliquée doit être définie pour l'algorithme d'étalonnage procédé. Sélectionnez la pression via le paramètre **Pression Cal**. Pour l'étalonnage procédé, la valeur de la pression de procédé (« Pression Proc ») et la valeur de la pression d'étalonnage (« Pression Cal ») peuvent être utilisées. Choisissez entre « Scaling » (mise à l'échelle) et « Calibration » (étalonnage) pour l'étalonnage procédé. Si vous choisissez la mise à l'échelle, la courbe d'étalonnage de la sonde reste identique, mais son signal de sortie est mis à l'échelle.

∰۱\Pa	rameter Setti	ng
Channel	CHAN_2	O2 Opt
Cal Pressure	1013.0	mbar
ProcPress	Options	
ProcCalPress	ProcPress	
Stability	Auto	
< 1/2	>	ţ

습۱. Saluitz

Rel.Humidity Sample Rate

LED Mode

alKa

40.00

Avec une valeur d'étalonnage < 1 %, le décalage du signal de sortie de la sonde est modifié pendant la mise à l'échelle, tandis qu'avec une valeur > 1 %, c'est la pente de la sortie de la sonde qui est ajustée. Pour plus d'informations concernant la mise à l'échelle, consultez le manuel de la sonde.

Sélectionnez la stabilité (**Stabilité**) requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Auto » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

La salinité (Salinité) de la solution mesurée peut être modifiée.

De plus, l'humidité relative (bouton **Humidité Rel**) du gaz d'étalonnage peut également être définie. Les valeurs autorisées pour l'humidité relative sont comprises entre 0 % et 100 %. Lorsqu'aucune mesure d'humidité n'est disponible, utilisez 50 % (la valeur par défaut).

Modifiez la fréquence d'échantillonnage (**Sample Rate**) requise de la sonde optique pendant la mesure. L'intervalle entre deux cycles de mesure de la sonde peut être ajusté, c'est-à-dire adapté à l'application. Une valeur élevée prolongera la durée de vie de l'OptoCap de la sonde.

Sélectionnez le mode LED (**Mode LED**) de la sonde. Les options suivantes sont disponibles. Off (Désactivé) : La LED est désactivée en permanence.

On (Activé) : La LED est activée en permanence.

Auto :La LED est activée si la température mesurée du fluide est inférieure à « Toff »
(voir la prochaine valeur) ou désactivée via le signal d'entrée numérique
(voir la section 8.10 « Entrées numériques »).

REMARQUE : aucune mesure de l'oxygène n'est effectuée si la LED est allumée.

Saisissez le seuil de la température mesurée pour éteindre automatiquement la LED de la sonde du M800 via le paramètre **Toff**.

Si la température du milieu est supérieure à « Toff », la LED s'éteindra. La LED s'allumera dès que la température du milieu sera inférieure à Toff = -3 K. Cette fonction permet d'accroître la durée de vie de l'OptoCap en éteignant la LED par le biais des cycles SEP ou NEP.

REMARQUE : cette fonction n'est active que si le mode de la LED est réglé sur « Auto ».

IParameter Setting Channel CH4N_1 CO: Bufler Tab Bufler Tab MT-9 Stability Medium TodRes 1000.0 mbar Salanity Salanity 6.00 g/L 112

8.1.4.5 Paramètres du dioxyde de carbone dissous

Si une sonde de CO_2 dissous est connectée à la voie sélectionnée alors que le mode Auto ou CO_2 a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou ajuster le tampon utilisé pour l'étalonnage ainsi que les paramètres « Stabilité », « Salinité », « HCO₃ » et « Pression Tot ».

Sélectionnez le tampon via le paramètre **Table Tampons**. Pour la reconnaissance automatique du tampon lors de l'étalonnage, sélectionnez la solution tampon Mettler-9 si vous comptez l'utiliser. Si la fonction de tampon automatique n'est pas utilisée ou si le tampon utilisé n'est pas le tampon Mettler-9, sélectionnez « Aucun ».

Sélectionnez la stabilité (**Stabilité**) requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Bas », « Moyen » ou « Strict » si vous préférez que le transmetteur contrôle automatiquement la stabilité du signal de la sonde pendant l'étalonnage.

Si « %sat » est l'unité choisie pour le CO₂ dissous mesuré, il faut tenir compte de la pression pendant l'étalonnage ou la mesure. Pour cela, il convient de régler le paramètre **Pression Tot**. Si vous avez sélectionné une autre unité que « %sat », le résultat ne sera pas influencé par ce paramètre.

Le paramètre de salinité (**Salinité**) indique la quantité totale de sels dissous dans l'électrolyte de CO₂ de la sonde connectée au transmetteur. Il s'agit d'un paramètre spécifique à la sonde. La valeur par défaut (28,00 g/L) est valable pour le modèle InPro 5000 i. Ne modifiez pas ce paramètre si vous utilisez le modèle InPro 5000 i.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Le paramètre HCO_3 indique la concentration d'hydrogénocarbonate dans l'électrolyte de CO_2 de la sonde connectée au transmetteur. Il s'agit aussi d'un paramètre spécifique à la sonde. La valeur par défaut (0,050 Mol/L) est valable pour le modèle InPro 5000 i. Ne modifiez pas ce paramètre si vous utilisez le modèle InPro 5000 i.

8.1.4.6 Paramètres de mesure de la conductivité thermique du CO₂ dissous hi

Si pendant la configuration des voies (voir la section $8.1.1 \, \text{«}$ Config des voies ») vous avez sélectionné le paramètre « CO₂ Hi » (CO₂ élevé), vous pouvez définir ou modifier les paramètres « Stabilité » (manuel/auto), « CO₂ solubilité » et « Facteur Temp ».

<u>الم</u> ار ۱P	arameter Setting	
Channel	CHAN_2 COs	hi
Stability	Auto	
CO ₂ -solub.	for beer	
		5

Sélectionnez la stabilité (**Stabilité**) requise pour le signal de mesure pendant la procédure d'étalonnage. Choisissez « Manuel » si vous voulez que l'utilisateur puisse déterminer si un signal est suffisamment stable pour procéder à l'étalonnage. Choisissez « Auto » si vous préférez qu'un contrôle de la stabilité du signal de la sonde soit automatiquement effectué durant l'étalonnage par le biais du transmetteur.

La sonde vous propose de choisir le paramètre « CO_2 **Solubilité** » pour effectuer des mesures dans la bière, l'eau ou le cola. Le paramètre « cola » s'utilise avec les boissons gazeuses non alcoolisées. Pour d'autres boissons, l'utilisateur a la possibilité de saisir des valeurs individuelles pour la solubilité du CO_2 et les facteurs de température.

Valeurs par défaut pour effectuer des mesures dans la bière (valable pour des températures comprises entre -5 et 50 °C) : Solubilité du CO_2 (A) : 1,420 g/L Facteur de temp. (B) : 2 485

Valeurs pour l'eau pure : Solubilité du CO_2 (A) : 1,471 g/L Facteur de temp. (B) : 2 491 Valeurs pour le cola :

Solubilité du CO_2 (A) : 1,345 g/L Facteur de temp. (B) : 2 370

		1.00.1
Channel	CHAN_2	COah
Stability	Auto	1
CO _s -solub.	individual	1
	1.407	1.

REMARQUE : la sonde est étalonnée en usine et configurée par défaut pour effectuer des mesures dans la bière.

Pour les boissons dont l'utilisateur connaît la solubilité exacte du CO₂ et le facteur de température, les valeurs peuvent être modifiées **individuellement**.

Pour évaluer la solubilité (**CO**₂ solub.) et les facteurs de température (Facteur Temp), l'utilisateur peut utiliser les formules suivantes.

 $HCO_2 = A * \exp(B * (1 / T - 1 / 298, 15))$

 $cCO_2 = HCO_2 * pCO_2$

 $\begin{array}{ll} \text{HCO}_2: & \text{Solubilité du CO}_2 \text{ calculée (constante de Henry) à la température du procédé mesuré } \\ \text{A}: & \text{Solubilité du CO}_2 (g/L à 25 \ ^{\circ}\text{C}) \end{array}$

B : Facteur de température (valable pour des températures comprises entre -5 et 50 °C)

cCO₂ : Concentration de CO₂ calculée en g/L ou V/V

8.1.4.7 Paramètres de mesure du COT

Pour savoir comment configurer les paramètres de mesure du COT, reportez-vous au manuel d'utilisation du 5000TOCi fourni avec la sonde de Carbone Organique Total 5000TOCi.

8.1.4.8 Paramètres de mesure du débit

Pour les voies dédiées au débit, vous pouvez modifier les paramètres « Pipe ID » et « Flow Cut »

ظ <i>ا</i> ۱۳	arameter Set	ting	
Channel	CHAN_6	Flow hi	
Pipe ID	1.000	inch	
Flow Cut	0.0000	GPM	
			ŗ

E	dit Pi	pe ID			ESC
	1.	000			inch
	1	2	3	+1 -	U
	4	5	6		Clear
	7	8	9	0	┙

Appuyez sur le champ de saisie pour saisir la valeur du paramètre **Pipe ID**. Un clavier apparaît pour modifier la valeur. Pour mesurer la vitesse du débit en m/s, vous devez connaître la taille du diamètre intérieur de la conduite (dans laquelle la sonde est installée) pour procéder aux calculs. Saisissez le diamètre intérieur exact en centimètres. Appuyez sur le bouton ← pour accepter la valeur.

Б	dit Fl	ow Cut			ESC
	0.	0 0 3 0			GPM
	1	2	3	+1 -	U
	4	5	6		Clear
	7	8	9	0	L.

Pour sélectionner le seuil minimal du débit, appuyez sur **Flow Cut**. Un clavier apparaît pour modifier la valeur. Si la valeur mesurée est inférieure à la valeur saisie dans « Flow Cut », le transmetteur M800 règle la valeur du débit mesuré sur zéro. Appuyez sur le bouton \leftarrow pour accepter la valeur.

8.1.4.9 Paramètres des sondes de turbidité (InPro 8000)

Vous pouvez accéder aux menus suivants :

Canal :	« Turb » pour les sondes de turbidité (InPro 8000) est sélectionné.
Customer unit :	Saisissez l'unité spécifique au client ou une description (6 caractères maximum). « Turb » est défini par défaut. L'unité saisie peut être sélectionnée dans la liste des unités de mesure dans la fenêtre de mesure du menu « Paramétrage » (configuration des voies).
Cal Set :	Sélectionnez A, B ou C pour obtenir la mésure actuelle. Les facteurs de calcul sont mémorisés dans « Cal Set ». Dans le menu « entrées numériques », vous pouvez affecter un « Cal Set » à une entrée numérique par le biais du paramètre « Mode » et « entrées numériques ».

8.1.4.10 Paramètres des sondes de turbidité (InPro 8600i)

Vous pouvez accéder aux menus suivants :

<u>۲</u> ۱ ۱P	arameter Setting
Channel	ISM
Concentration	0.05509 g/ml
Color Corr.	On
	5

Canal :« ISM » pour les sondes de turbidité (InPro 8600 i) est sélectionné.Concentration :Saisissez une valeur pour la concentration.Color Corr :Activez (On) ou désactivez (Off) la correction des couleurs pour les sondes InPro 8600 i/D3.

8.1.4.11 Capacité de déionisation (DI-Cap™)

Total équivalents, ppm-litres ou grains : Le M800 peut contrôler le débit et la concentration des minerais qui s'introduisent dans une cuve de déionisation et déduire la quantité de résine consommée. Il est possible de contrôler la concentration en minerais s'étant introduit dans la cuve de déionisation en multipliant les solides totaux dissous basés sur la conductivité par le débit et en intégrant ce résultat progressivement.

Le M800 permet de contrôler en temps réel la concentration en minerais si vous définissez les unités de mesure sur équivalents, ppm-litres ou grains. En connaissant également la capacité totale d'échange d'ions de la cuve, vous pouvez définir le pourcentage de cycle (% of run) et/ou le délai avant la prochaine régénération. Pour effectuer cette mesure, un capteur de débit ou une sonde de conductivité doit être installé.

Pour configurer la mesure de la capacité de déionisation :

- 1. Préparez la mesure pour le capteur de débit.
- 2. Préparez la mesure pour la sonde de conductivité.
- 3. Préparez une mesure supplémentaire pour la capacité de déionisation de la voie dédiée au débit (en équivalents, ppm-litres ou grains).
- 4. Suivez le chemin d'accès <Config/Mesure/Paramétrage> pour accéder aux paramètres de mesure du débit, puis sélectionnez la voie utilisée pour mesurer la conductivité et définissez le facteur TDS approprié pour mesurer l'eau selon les indications ci-après.

Vous pouvez remettre à zéro la capacité de déionisation ainsi que le débit total, en suivant le chemin d'accès <Config/Reset/Configure/Chan X/DiCap/Reset>.

Les **Solides totaux dissous (TDS)** peuvent être déduits et affichés en fonction des données relatives à la conductivité/résistivité. Les TDS correspondent à la concentration de matériaux conducteurs (par ex. le chlorure de sodium) correspondant à la mesure de conductivité. La salinité et les TDS sont des paramètres similaires, notamment en ce qui concerne le chlorure de sodium. Tous deux sont exprimés en parties par milliard (ppb), parties par million (ppm) ou parties par milliers (ppk, abréviations affichées sur le M800).

La valeur par défaut de 1,0 du facteur TDS permet de convertir la conductivité du chlorure de sodium à 0,462 ppm par uS/cm, avec une correction non linéaire à des niveaux de conductivité très faibles et très élevés. Le facteur TDS peut être modifié pour une conversion précise de la composition d'autres matériaux. Il s'agit d'un multiplicateur déterminé sur la conversion du chlorure de sodium. Les facteurs pour les autres matériaux sont indiqués dans le tableau ci-dessous (calculés sur le facteur du NaCl). Ces valeurs rectifient la valeur TDS de la conductivité réelle des matériaux indiqués dans ce tableau. Des valeurs différentes sont requises pour effectuer des mesures impliquant des calculs d'échange d'ions (voir ci-après).

Matériau NaCl	Facteur TDS 1,0000
KCI	1,0786
CaCl ₂	0,8839
CaCO ₃	0,8407
NaOH	0,3480

Les **Solides totaux dissous pour les calculs d'échange d'ions** sont déterminés à partir de la conductivité et du poids des matériaux présents, dont l'équivalent d'échange d'ions affiche une valeur identique au carbonate de calcium. Pour une composition définie des minerais neutres présentant une conductivité équivalente au chlorure de sodium, un facteur TDS de 0,856 affiche une valeur en ppm du NaCl identique au CaCO₃. Dans des conditions d'échange de base fort, un facteur TDS de 0,435 affiche une valeur en ppm du NaOH identique au CaCO₃.

8.1.5 Table de la courbe de concentration

Pour spécifier une courbe de concentration pour des solutions spécifiques aux clients, il est possible de modifier jusqu'à 5 valeurs de concentration et jusqu'à 5 températures dans une matrice. Pour ce faire, les valeurs souhaitées sont modifiées sous le menu de la table de la courbe de concentration. Outre les valeurs de température, les valeurs de conductivité et de concentration pour la température correspondante sont modifiées. La courbe de concentration peut être sélectionnée ou utilisée avec les sondes de conductivité.

Descriptor	%Conc.
TempPoint	2
ConcPoint	2

Saisissez le nom de la courbe de concentration (6 caractères maximum) en appuyant sur le champ **Descriptor**.

Saisissez le nombre de points de température (**TempPoint**) et de points de concentration (**ConcPoint**) souhaités.

Les différentes valeurs peuvent être saisies en accédant à la page suivante du menu.

Cond	Conc	Conc1	Conc2	Conc3	Conc4	Conc5
Temp .	C C	0.000	0.000	0.000	0.000	0.000
TI	0.000	0.000n	0.000n	0.000n	0.000n	0.000m
T2	0.000	0.000n	0.000n	0.000n	0.000n	0.000
T3	0.000	0.000n	0.000n	0.000n	0.000n	0.000
T4	0.000	0.000n	0.000m	0.000n	0.000n	0.000m
T5	0.000	0.000n	0.0000	0.000n	0.000h	0.000n

Saisissez les valeurs pour la température (**T1...T5**), la concentration (**Conc1...Conc5**) et la conductivité correspondante en appuyant sur le champ de saisie approprié. Vous pouvez également modifier l'unité de conductivité dans le champ de saisie correspondant. **REMARQUE :** les valeurs de température doivent augmenter de T1 à T2 à T3, etc. Les valeurs de concentration doivent augmenter de Conc1 à Conc2 à Conc3, etc.

REMARQUE : les valeurs de conductivité aux différentes températures doivent augmenter ou diminuer de Conc1 à Conc2 à Conc3, etc. Les minima et/ou les maxima ne sont pas autorisés. Si les valeurs de conductivité à T1 augmentent avec les différentes concentrations, elles doivent également augmenter aux autres températures. Si les valeurs de conductivité à T1 diminuent avec les différentes concentrations, elles doivent également diminuer aux autres températures.

8.2 Source de température (sondes analogiques uniquement)

Source : « Auto » (par défaut), « Pt100 », « Pt1000 », « NTC22K », « Fixe »

La troisième ligne indique le réglage de la température associée. Plage : -40 à 200 °C. Température par défaut : 25 °C

8.3 Sorties analogiques

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Sortie ana

Lisez les explications suivantes pour en savoir plus sur les différents réglages des sorties analogiques.

CONFIG \ Analog Outputs		
Aout	#1	
Chan	CHAN_1	pH
Range	4-20mA	
Alarm	Off	
Hold Mode	Last Value	
< 1/2	>	t

Appuyez sur le champ **Aout**, puis sélectionnez le signal de sortie que vous souhaitez configurer en appuyant sur #1 pour le signal de sortie 1, #2 pour le signal de sortie 2, etc. Appuyez sur le bouton correspondant pour affecter la voie (**Chan**). Sélectionnez la voie que vous souhaitez associer au signal de sortie.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) au signal de sortie.

REMARQUE : en dehors des mesures « pH », « O₂ », « T », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être associées au signal de sortie.

Sélectionnez la plage (Plage) du signal de sortie.

Pour ajuster la valeur du signal de sortie analogique si une alarme se produit, appuyez sur le champ **Alarme**. « Off » signifie que l'alarme a une influence sur le signal de sortie.

REMARQUE : outre les alarmes survenant sur la voie affectée, toutes les alarmes qui se déclenchent sur le transmetteur seront prises en compte.

Vous pouvez définir la valeur du signal de sortie si le transmetteur passe en mode « Maintien ». Vous pouvez choisir entre la dernière valeur (c'est-à-dire la valeur affichée avant que le transmetteur ne passe en mode « Hold ») ou une valeur fixe.

Appuyez sur le champ **Mode Maintien** pour sélectionner la valeur de votre choix. Si vous sélectionnez une valeur fixe, un autre champ de saisie s'affiche.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Transmetteur M800

	Analog Outputs	
Aout Type	Normal	
Min Value	2.0000 pH	
Max Value	12.000 pH	
< 2/2	>	Ц

Le paramètre **Aout Type** (type de sortie analogique) propose les valeurs suivantes : « Normal », « Bi-Linéaire », « Auto domaine » ou « Logarithm ». La plage peut être comprise entre 4 et 20 mA ou 0 et 20 mA. « Normal » est défini par défaut. Il donne une mise à l'échelle linéaire entre les limites de mise à l'échelle minimale et maximale. « Bi-Linear » invite également à saisir une valeur de mise à l'échelle pour le point central du signal et permet deux segments linéaires différents entre les limites de mise à l'échelle minimale et maximale.

Appuyez sur le champ **Min Value**, qui correspond à la valeur de début de la plage de sortie analogique.

Appuyez sur le champ **Max Value**, qui correspond à la valeur de fin de précipitation du signal de sortie analogique.

Selon le type de sortie analogique sélectionné, des valeurs supplémentaires peuvent être saisies.

Bi-Linear invite également à saisir une valeur de mise à l'échelle pour la valeur centrale du signal et permet deux segments linéaires différents entre les valeurs minimales et maximales définies.

La mise à l'échelle **Auto domaine** propose deux plages de sortie. Ce paramètre permet de travailler avec une API pour donner une plage de mesure étendue à l'extrémité supérieure de l'échelle et une plage plus étroite avec une haute résolution à l'extrémité inférieure de l'échelle. Deux configurations distinctes sont utilisées : l'une pour la limite maximale de la plage supérieure et l'autre pour la limite maximale de la plage inférieure et ce, pour le seul signal 0/4-20 mA.

« Max1 » est la limite maximale de la plage inférieure automatique. La valeur maximale de la plage supérieure automatique a été définie dans « Max Value ». Ces deux plages présentent la même valeur minimale, définie dans « Min Value ». Si la valeur d'entrée est supérieure à la valeur Max1, le transmetteur bascule automatiquement sur la deuxième plage. Pour indiquer la plage valide, un relais peut être affecté. Le relais sera activé si le transmetteur change de plage.

Si vous avez sélectionné **Logarithm**, vous serez invité à saisir la valeur maximale (Max Value) et le nombre de décades.

8.4 Valeurs de consigne

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Vals de consigne

Lisez les explications suivantes pour en savoir plus sur les différents réglages des valeurs de consigne.

	\Set Points	
Set Points	#1	
Chan M1	CHAN_1	pН
Туре	High	
High	7.3000	pН
< 1/2	>	ţ

Appuyez sur le champ **Vals de consigne**, puis sélectionnez la valeur de consigne que vous souhaitez configurer en appuyant sur #1 pour la valeur de consigne 1, #2 pour la valeur de consigne 2, etc.

Appuyez sur le champ **Chan** pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer à la valeur de consigne.

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer à la valeur de consigne.

« Mx » indique la mesure affectée à la valeur de consigne. (voir la section 8.1.1 « Config des voies »). **REMARQUE :** en dehors des paramètres « pH », « O₂ », « T », « mS/cm », « %EP WFI », etc., les valeurs ISM « DLI », « TTM » et « ACT » peuvent également être associées à la valeur de consigne.

Dans **Type**, vous pouvez choisir le type de la valeur de consigne : « Haut», « Bas », « Between », « Outside » ou « Désactivé». Une valeur réglée sur « Outside » déclenchera une alarme dès que la mesure dépasse sa limite maximale ou minimale. Une valeur réglée sur « Between » déclenchera une alarme dès que la mesure se trouve entre sa limite maximale et sa limite minimale.

REMARQUE : si le type de la valeur de consigne n'est pas réglé sur « Désactivé », vous pouvez définir des paramètres supplémentaires. Voir la description suivante.

En fonction du type de valeur de consigne sélectionné, vous pouvez définir les limites des valeurs de consigne.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

Une fois la configuration terminée, un relais peut être activé si la condition **Hors plage** est détectée sur la voie d'entrée affectée.

Pour sélectionner le relais souhaité qui sera activé si les conditions définies sont remplies, appuyez sur le champ **Relai**. Si le relais choisi est utilisé pour une autre tâche, le transmetteur affiche le message « Relay Conflict » (conflit de relais).

Vous pouvez définir le mode de fonctionnement du relais.

Les contacts du relais sont en mode normal jusqu'à ce que la valeur de consigne associée soit dépassée, ensuite le relais est activé et le mode du contact change. Sélectionnez « Inversé » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts normalement ouverts sont en position fermée et les contacts normalement fermés sont en position ouverte, jusqu'à ce que la valeur de consigne soit dépassée).

Saisissez le délai en secondes dans **Délai**. Le relais sera activé uniquement si la valeur de consigne est dépassée de manière continue pendant le laps de temps spécifié. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.

Saisissez une valeur pour **Hysteresis**. Une valeur d'hystérésis nécessite que la mesure revienne dans les limites de la valeur de consigne selon un pourcentage spécifié avant la désactivation du relais.

Lorsque la valeur de consigne est élevée, la mesure doit diminuer davantage que le pourcentage indiqué sous la consigne avant la désactivation du relais. Lorsque la valeur de consigne est faible, la mesure doit augmenter davantage que le pourcentage indiqué au-dessus de la consigne avant la désactivation du relais. Par exemple, avec une valeur de consigne élevée de 100, lorsque cette valeur est dépassée, la mesure doit descendre en dessous de 90 avant que le relais ne soit désactivé.

Sélectionnez « Off » (désactivé), « Last Value » (dernière valeur) ou « On » (activé) pour le paramètre du relais **Mode Maintien**. Il s'agit de l'état du relais lorsqu'il se trouve en mode « Hold ».

	\Set Points	
Out Range	No	
Relay	#3	Normal
Delay	10	980
Hysteresis	0.5000	pН
Hold Mode	Last Value	
< 2/2	>	IJ

8.5 Configuration d'ISM (sondes ISM uniquement)

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Config ISM

Channel	CHAN_1 pH/ORP
ISM Para	Sensor Monitor
	CIP Cycle Limit
	SIP Cycle Limit
	AutoClave Cycle Limit

Lisez les explications suivantes pour en savoir plus sur la configuration d'ISM.

8.5.1 Dispositif de contrôle de la sonde

Si une électrode de pH/redox, une sonde optique O_2 hi, O_2 lo, O_2 trace, O_3 ou O_2 est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou ajuster le paramètre « Sensor Monitor » (dispositif de contrôle de la sonde). Le menu « Surveill. capteur » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur le bouton « Sensor Monitor ».

Saisissez le nombre de jours pour définir la valeur initiale du délai de maintenance (**TTM Initial**). La valeur initiale peut être modifiée en fonction de l'utilisation de l'application.

Pour les électrodes de pH/redox, la minuterie estime le moment où doit être effectué le prochain cycle de nettoyage pour garantir les meilleures performances de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI.

Pour les sondes à oxygène ampérométriques et les sondes à ozone, le délai de maintenance indique le cycle de maintenance de la membrane et de l'électrolyte.

Appuyez sur le champ **Réinit TTM** . Sélectionnez « Yes » pour réinitialiser le délai de maintenance (TTM) de la sonde à sa valeur initiale.

Le délai de maintenance doit être réinitialisé après les opérations suivantes.

Électrodes de pH :	Cycle de maintenance manuelle de la sonde.
Sonde à oxygène ou ozone :	Cycle de maintenance manuelle de la sonde
	ou remplacement de la membrane de la sonde

REMARQUE : les paramètres « TTM Initial » et « Réinit TTM » ne sont pas disponibles pour les sondes à oxygène optiques.

REMARQUE : lorsque vous connectez une sonde, la sonde affiche le délai avant sa prochaine maintenance.

Saisissez la valeur de **ACT Initial** en jours. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Le minuteur d'étalonnage adaptif (ACT) estime le moment où doit être effectué le prochain étalonnage pour garantir les meilleures performances de mesure. Elle tient compte des modifications importantes apportées aux paramètres DLI. ACT reprendra sa valeur initiale une fois l'étalonnage effectué. La valeur initiale peut être modifiée en fonction de l'utilisation de l'application et transmise à la sonde.

Appuyez sur le champ **DLI Reset**. Sélectionnez « Yes » pour réinitialiser l'Indicateur dynamique de durée de vie (DLI) de la sonde à sa valeur initiale. La réinitialisation sera effectuée une fois les modifications enregistrées.

Le DLI permet d'estimer, d'après les contraintes réelles subies, à quel moment l'électrode de pH, le corps interne d'une sonde à oxygène ampérométrique ou d'une sonde à ozone, ou l'OptoCap d'une sonde à oxygène optique, arrive en fin de vie. La sonde prend toujours en compte la contrainte moyenne des derniers jours et peut augmenter/réduire la durée de vie en fonction du résultat.

Les paramètres suivants affectent l'indicateur de durée de vie :

Paramètres dynamiques :

- Température
- valeur de pH ou d'oxygène
- Résistance du verre (pH uniquement)
- Résistance de référence (pH uniquement)

Paramètres fixes :

- Historique d'étalonnage
- Zéro et Pente
- Phase 0 et phase 100 (oxygène dissous optique uniquement)
- Temps d'éclairage
 - (oxygène dissous optique uniquement)
- Fréquence d'échantillonnage
 - (oxygène dissous optique uniquement)
- Cycles NEP/SEP/Autoclavage

La sonde conserve les informations enregistrées dans les circuits intégrés ; celles-ci peuvent être récupérées via un transmetteur ou via le logiciel de gestion des actifs iSense.

Pour les sondes à oxygène ampérométriques, le DLI dépend du corps interne de la sonde. Une fois que vous avez remplacé le corps interne de la sonde, réinitialisez le DLI (« DLI Reset »).

Pour les sondes optiques à oxygène dissous, l'indicateur de durée de vie dépend de l'OptoCap. Une fois que vous avez remplacé l'OptoCap, réinitialisez le DLI (« DLI Reset »).

REMARQUE : lorsque vous connectez une sonde, la sonde affiche sa durée de vie restante.

REMARQUE : le paramètre « DLI Reset » n'est pas disponible pour les électrodes de pH. Si la valeur du DLI d'une électrode de pH est égale à 0, vous devez remplacer l'électrode.

Ċ Ċ

8.5.2 Nombre maximum de cycles NEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou ajuster le paramètre « CIP Cycle Limit » (nombre maximum de cycles NEP). Le paramètre « Nb max cycles NEP » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max cycles NEP ».

Appuyez sur le champ **Cycles Max** pour saisir le nombre maximum de cycles NEP. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles NEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles Max ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie.

Si la valeur indiquée dans « Cycles Max » est égale à 0, le compteur est désactivé.

REMARQUE : dans le cas d'une sonde à oxygène optique, la valeur définie dans « Cycles Max » sera également transmise à la sonde. Le transmetteur M800 télécharge la valeur « Cycles Max » d'une sonde à oxygène otique une fois celle-ci connectée.

Appuyez sur le champ **Temp** pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle NEP.

Les cycles NEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles NEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp ». Si la température ne baisse pas en dessous de la température définie -10 °C 5 minutes après que la première température a été atteinte, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le NEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ **Reset**. Sélectionnez « Yes » si le compteur NEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes.

Sonde optique : remplacement de l'OptoCap Sonde ampérométrique : remplacement du corps interne de la sonde.

REMARQUE : le paramètre « Reset » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

8.5.3 Nombre maximum de cycles SEP

Si une électrode de pH/redox, une sonde à oxygène ou une sonde de conductivité est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou ajuster le paramètre « SIP Cycle Limit » (nombre maximum de cycles SEP). Le paramètre « Nb max cycles SEP » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max cycles SEP ».

Appuyez sur le champ **Cycles Max** pour saisir le nombre maximum de cycles SEP. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles SEP sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles Max ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie.

Si la valeur indiquée dans « Cycles Max » est égale à 0, le compteur est désactivé.

REMARQUE : dans le cas d'une sonde à oxygène optique, la valeur définie dans « Cycles Max » sera également transmise à la sonde. Le transmetteur M800 télécharge la valeur « Cycles Max » d'une sonde à oxygène otique une fois celle-ci connectée.

Appuyez sur le champ **Temp** pour saisir la température qui doit être dépassée pour lancer le décompte d'un cycle SEP.

Les cycles SEP sont automatiquement reconnus par le transmetteur. L'intensité des cycles SEP étant variable (durée et température) selon les applications, l'algorithme du compteur reconnaît l'augmentation de la température de mesure au-dessus de la valeur saisie dans « Temp ». Si la température ne baisse pas en dessous de la température définie -10 °C 5 minutes après que la première température a été atteinte, le compteur augmente d'une unité et est verrouillé pour les deux heures suivantes. Si le SEP dure plus de deux heures, le compteur est à nouveau incrémenté d'une unité.

Appuyez sur le champ **Reset**. Sélectionnez « Yes » si le compteur SEP de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes.

Sonde optique : remplacement de l'OptoCap Sonde ampérométrique : remplacement du corps interne de la sonde.

REMARQUE : le paramètre « Reset » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

8.5.4 Nombre maximum de cycles d'autoclavage

Si une électrode de pH/redox, une sonde à oxygène ampérométrique ou, en fonction du modèle, une sonde à oxygène optique est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez définir ou ajuster le paramètre « Nb max cycles d'autoclav ». Le paramètre « Nb max cycles d'autoclav » s'affichera également si l'une des sondes susmentionnées a été installée pendant la configuration des voies.

Appuyez sur « Nb max cycles d'autoclav ».

Appuyez sur le champ **Cycles Max** pour saisir le nombre maximum de cycles d'autoclavage. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Si la valeur indiquée dans « Cycles Max » est égale à 0, le compteur est désactivé.

La sonde n'étant pas connectée au transmetteur pendant un cycle d'autoclavage, le système vous demandera pour chaque sonde connectée si elle a été passée en autoclave. Selon votre réponse, le compteur sera incrémenté ou non. Si la limite (valeur saisie dans « Cycles Max ») est atteinte, une alarme peut être indiquée et définie pour un relais de sortie.

REMARQUE : dans le cas d'une sonde à oxygène optique, la valeur définie dans « Cycles Max » sera également transmise à la sonde. Le transmetteur M800 télécharge la valeur « Cycles Max » d'une sonde à oxygène otique une fois celle-ci connectée.

Appuyez sur le champ **Reset**. Sélectionnez « Yes » si le compteur « AutoClave » de la sonde doit être remis à zéro. La réinitialisation sera effectuée une fois les modifications enregistrées.

Lorsqu'une sonde à oxygène est connectée, le compteur doit être réinitialisé après les opérations suivantes.

Sonde optique : remplacement de l'OptoCap Sonde ampérométrique : remplacement du corps interne de la sonde.

REMARQUE : le paramètre « Reset » n'est pas disponible sur les électrodes de pH/redox. L'électrode de pH/redox doit être remplacée si le nombre maximum de cycles a été dépassé.

8.5.5 Ajustement de la tension DLI

Si une électrode de pH/redox est connectée à la voie sélectionnée alors que le mode Auto a été choisi pendant la configuration des voies (voir la section 8.1.1 « Config des voies »), vous pouvez ajuster le paramètre « DLI Stress Adjustement » (ajustement de la tension DLI). Grâce à ce paramètre, l'utilisateur peut ajuster la sensibilité de la sonde à la tension exercée par son utilisation afin de calculer le DLI.

后 CONFIG	NSM Setup	
ISM Para	DLI Stress Adjustment	
< 2/2	>	5

Allez à la page 2 de la Configuration ISM (Config ISM).

Appuyez sur le bouton DLI Stress Adjustment.

Sélectionnez le type d'ajustement de votre choix : « Bas », « Moyen » ou « Haut ».

LOW : DLI étendue (-30 % de sensibilité) MEDIUM : DLI standard (par défaut) HIGH : DLI réduite (+30 % de sensibilité)

Appuyez sur ← pour valider le réglage.

8.5.6 Paramètres du cycle SAN

Lorsqu'une sonde à ozone est connectée, vous pouvez définir les paramètres du cycle SAN suivants : « Cycles Max » (nombre maximum de cycles d'assainissement), « Conc. Max » (concentration maximale d'ozone autorisée), « Conc. Min » (concentration minimale d'ozone autorisée), « Cycle Time » (durée du cycle) et « Reset » (réinitialisation).

Appuyez sur le bouton « SAN Cycle Parameters ».

Appuyez sur le champ « Max Cycles » pour saisir le nombre maximum de cycles SAN. Appuyez sur le bouton ← pour accepter la valeur. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Les cycles SAN sont comptabilisés par le transmetteur. Si la limite (valeur saisie dans « Cycles Max ») est atteinte, une alarme peut être configurée. Si la valeur indiquée dans « Cycles Max » est égale à 0, le compteur est désactivé.

Appuyez sur le champ « Conc. Max » pour saisir la concentration d'ozone au-delà de laquelle un cycle d'assainissement doit être détecté. Appuyez sur \leftarrow pour accepter la valeur.

Appuyez sur le champ « Conc. Min » pour saisir la concentration d'ozone en deçà de laquelle un cycle d'assainissement ne doit plus être détecté. Appuyez sur ← pour accepter la valeur

Appuyez sur le champ « Temps Cycle ». Saisissez la durée du cycle. La concentration d'ozone doit être supérieure à la valeur définie dans « Conc. Min » lorsque la valeur « Conc. Max » a été dépassée pour compter un cycle d'assainissement. Appuyez sur – pour accepter la valeur.

Appuyez sur le champ « RAZ ». Sélectionnez « Oui » pour remettre à zéro le compteur d'assainissement. L'assainissement est généralement réalisé après le remplacement de la sonde. La réinitialisation sera effectuée une fois les modifications enregistrées

Appuyez sur ← pour quitter le menu « Paramètres Cycles SAN ».

8.5.7 Réinitialisation des compteurs des sondes UniCond2e

Pour les sondes UniCond2e, les compteurs suivants peuvent être réinitialisés : « Temp élevée » et « Conductivité haute ».

Appuyez sur le bouton « Réinit compteur ».

Sélectionnez « Oui » pour réinitialiser le compteur souhaité, puis appuyez sur « Enter ». La réinitialisation sera effectuée une fois les modifications enregistrées.

Appuyez sur ← pour quitter le menu « Réinit compteur ».
8.5.8 Définition de l'intervalle d'étalonnage des sondes UniCond2e

Pour les sondes UniCond2e, vous pouvez définir l'intervalle d'étalonnage (« Interval Cal»).

Appuyez sur le bouton « Interval Cal ».

Appuyez sur le champ **Interval Cal** pour saisir l'intervalle d'étalonnage. Le transmetteur calculera la durée avant le prochain étalonnage (TTCal) à partir de cette valeur. Appuyez sur ← pour accepter la valeur. La nouvelle valeur sera transmise à la sonde une fois les modifications enregistrées.

Appuyez sur ← pour quitter le menu « Interval Cal ».

8.6 Alarme générale

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Alarme Générale

Lisez les explications suivantes pour en savoir plus sur les différents réglages de l'alarme générale.

	General Al	arm
Options	Events]
Relay	#1	Inverted
Delay	5	sec
		5

Appuyez sur le bouton « Evènements » à côté de **Option** pour sélectionner les événements qui déclencheront une alarme.

Pour activer un relais lorsque les conditions définies sont remplies, appuyez sur le champ **Relay**. Seul le relais 1 peut être affecté à l'alarme générale. Pour les alarmes générales, le mode de fonctionnement du relais affecté est toujours inversé.

Saisissez le délai en secondes dans **Délai**. Le relais sera activé uniquement si la valeur de consigne est dépassée de manière continue pendant le laps de temps spécifié. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.

8.7 ISM / Alarme capteur

CHEMIN D'ACCÈS : 🖄 \ CONFIG \ ISM / Alarme capteur

Lisez les explications suivantes pour en savoir plus sur les différents réglages de l'alarme de la sonde ISM.

Sélectionnez la voie souhaitée en appuyant sur le bouton **Option**.

Vous pouvez sélectionner différents événements (**Evènements**) qui déclencheront une alarme en fonction de la voie sélectionnée et de la sonde affectée. Certaines alarmes seront prises en compte dans n'importe quelle circonstance et ne doivent pas être sélectionnées ou désactivées.

Pour sélectionner le relais souhaité qui sera activé si un événement se produit, appuyez sur le champ **Relai**.

Vous pouvez définir le mode de fonctionnement du relais.

Les contacts du relais sont en mode normal jusqu'à ce que l'un des événements sélectionnés se soit produit. Ensuite, le relais est activé et l'état du contact change. Sélectionnez « Inverted » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts ouverts sont généralement en position ouverte et les contacts fermés en position fermée si un événement s'est produit).

Saisissez le délai en secondes dans **Délai**. Un délai nécessite que l'événement se produise de manière continue pendant le laps de temps spécifié avant que le relais ne s'active. Si la condition disparaît avant que le délai soit écoulé, le relais ne sera pas activé.

8.8 Nettoyage

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Nettoyage

Lisez les explications suivantes pour en savoir plus sur les différents réglages du nettoyage.

Saisissez le nombre d'heures avant le prochain nettoyage dans **Intervalle**. L'intervalle de nettoyage peut être compris entre 0,000 et 99 999 heures. Un réglage sur 0 désactive le cycle de nettoyage.

Saisissez la durée du nettoyage en nombre de secondes dans **Temps nett**. La durée du nettoyage peut être comprise entre 0 et 9 999 secondes et doit être inférieure à l'intervalle de nettoyage.

Sélectionnez la (les) voie(s) à affecter aux cycles de nettoyage dans le champ **Attribuer**. Les voies affectées passeront en mode « Maintien » pendant le nettoyage.

Choisissez un relais (**Relay**). Les contacts du relais sont en mode normal jusqu'à ce que le cycle de nettoyage commence, ensuite le relais est activé et le mode du contact change. Sélectionnez « Inverted » pour inverser le mode de fonctionnement normal du relais (par exemple, les contacts ouverts sont normalement en position ouverte et les contacts fermés en position fermée lorsqu'un cycle de nettoyage commence).

8.9 Configuration de l'affichage

CHEMIN D'ACCÈS : 🖄 \ CONFIG \ Config affichage

Lisez les explications suivantes pour en savoir plus sur les différents réglages de la configuration de l'affichage.

Saisissez le nom du transmetteur M800 (N° **Instrument**). Le nom du transmetteur sera également affiché en haut de la fenêtre d'accueil et de la fenêtre de menu.

Utilisez le paramètre **Rétroéclt** (rétroéclairage) pour éteindre l'écran du transmetteur ou baisser sa luminosité après un certain temps d'inutilisation. L'écran du transmetteur se rallumera automatiquement si vous appuyez dessus.

Saisissez la durée d'éclairage en minutes dans **durée éclairage**. La durée d'éclairage correspond au délai d'inutilisation avant que la luminosité de l'écran du transmetteur ne baisse ou que l'écran ne s'éteigne.

REMARQUE : si une alarme ou un avertissement n'est pas pris en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée.

Le paramètre **Max** permet de régler le rétroéclairage lorsque le transmetteur est en cours d'utilisation. Avec le paramètre **Dim**, le rétroéclairage de l'écran du transmetteur peut être réglé lorsque sa luminosité est réduite. Appuyez sur les boutons + ou - situés sur la ligne correspondante pour régler ces paramètres.

8.10 Entrées numériques

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Entrée num

Lisez les explications suivantes pour en savoir plus sur les différents réglages des entrées numériques.

	Digital Inputs	
Channel	CHAN_1	
Mode	Hold	
Digital Inputs	#1	
State	High	
		IJ

Appuyez sur le champ « Chan_ » à côté de **voie** pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer au signal d'entrée.

Appuyez sur le champ **Mode** pour sélectionner le mode d'un signal d'entrée numérique actif. Choisissez « Maintien » pour mettre la voie affectée en mode « Maintien ». Pour les capteurs de débit, le signal d'entrée numérique peut être utilisé pour réinitialiser la valeur de débit cumulée (Reset T-flow) de la voie. Si une sonde optique à oxygène dissous est connectée, le signal d'entrée numérique peut être utilisé pour contrôler la LED de la sonde.

Appuyez sur **Digital Inputs** pour affecter les entrées numériques (#1 pour EN1, #2 pour EN2, etc.), puis sélectionnez le signal d'entrée numérique à associer à la voie.

Vous pouvez définir un autre paramètre si un signal d'entrée numérique a été sélectionné.

Appuyez sur le champ State pour indiquer l'intensité du signal d'entrée (élevée ou faible).

8.11 Système

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Système

Lisez les explications suivantes pour en savoir plus sur les différents réglages du système.

Sélectionnez la langue de votre choix (**Langue**). Les langues suivantes sont disponibles : anglais, français, allemand, italien, espagnol, portugais, russe, chinois, coréen ou japonais.

Saisissez la date et l'heure (Date&Heure).

Le passage automatique de l'heure d'hiver à l'heure d'été (et vice versa) évite à l'utilisateur de modifier l'heure deux fois par an.

Le passage à l'heure d'été s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **été**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant. Le changement d'heure saisonnier a lieu à 02:00 h.

Le passage à l'heure d'hiver s'effectue automatiquement grâce à l'horloge de douze mois intégrée dans le transmetteur. Vous pouvez définir la date du changement d'heure avec le paramètre **hiver**.

Sous réserve que ce soit un dimanche, le changement d'heure s'effectuera le jour correspondant à la valeur saisie. À défaut, le changement d'heure se produira le dimanche suivant.

Le changement d'heure saisonnier a lieu à 03:00 h.

Vous pouvez choisir le nombre d'heures à ajouter ou retirer lors du changement d'heure saisonnier. Pour cela, appuyez sur le bouton **Shift Hour**.

8.12 Régulateur PID

CHEMIN D'ACCÈS : A \ CONFIG \ Controleur PID

La régulation du PID est une action de contrôle proportionnelle, intégrale et dérivée capable de réguler en douceur un procédé. Avant de configurer le transmetteur, les caractéristiques de procédé suivantes doivent être définies.

Définissez le sens de contrôle du procédé

- Conductivité :

Dilution : action directe dans laquelle une mesure en augmentation produit une augmentation de la sortie de contrôle, telle que contrôle de l'alimentation en eau de dilution de faible conductivité pour le rinçage de moteur, les tours de refroidissement ou les chaudières

Concentration : action inversée dans laquelle la mesure en augmentation produit une diminution de la sortie de contrôle, telle que contrôle de l'alimentation en produit chimique pour atteindre la concentration souhaitée

- Oxygène dissous :

Désaération – action directe dans laquelle l'augmentation de la concentration en oxygène dissous produit une augmentation de la sortie de contrôle, telle que contrôle de l'alimentation en agent réducteur pour éliminer l'oxygène de l'eau alimentant les chaudières Aération : action inversée dans laquelle l'augmentation de la concentration en O_2 dissous produit une diminution de la sortie de contrôle, telle que contrôle de la vitesse d'un ventilateur d'aération pour maintenir la concentration en O_2 dissous souhaitée dans la fermentation ou le traitement des eaux usées

– pH/redox :

Alimentation en acide uniquement : action directe dans laquelle l'augmentation du pH produit l'augmentation de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox

Alimentation en base uniquement : action inversée dans laquelle l'augmentation du pH produit la diminution de la sortie de contrôle, également pour l'alimentation en réactif réduisant le redox

Alimentation en acide et base : action directe et inversée

Définissez le type de sortie de contrôle en fonction du dispositif de contrôle utilisé :

Fréquence d'impulsion : utilisée avec une pompe doseuse à entrée d'impulsion Longueur d'impulsion : utilisée avec une électrovanne

Analogique : utilisée avec un dispositif d'entrée de courant, tel que des commandes électriques, pompes doseuses à entrée analogique ou convertisseurs électropneumatiques (I/P) pour vannes de commande pneumatiques

Les réglages du contrôle par défaut fournissent un contrôle linéaire adapté à la conductivité, à l'oxygène dissous. Par conséquent, pour la configuration de ces paramètres du PID (ou pour le contrôle simple du pH), il est inutile de vous préoccuper des réglages de la zone morte et des points excentrés dans la section Paramètres de réglage ci-dessous. Les réglages de contrôle non linéaires sont utilisés dans des situations de contrôle de pH/redox plus délicates. Si vous le souhaitez, définissez la non-linéarité du procédé pH/redox. Il est possible d'obtenir un meilleur contrôle si la non-linéarité correspond à une non-linéarité contraire dans le système de contrôle. Une courbe de titrage (graphique du pH ou redox/ volume de réactif) réalisée sur un échantillon du procédé fournit les meilleures informations. Il existe souvent un gain ou une sensibilité de procédé très important à proximité su seuil et un gain qui diminue avec l'éloignement par rapport au seuil. Pour contrecarrer ce phénomène, l'instrument permet d'ajuster le contrôle non linéaire en réglant une zone morte autour du seuil, des points excentrés et des limites proportionnelles en bouts de contrôle, tel qu'illustré dans la figure ci-dessous.

Déterminez les réglages appropriés pour chacun de ces paramètres de contrôle établis selon la forme de la courbe de titrage du procédé pH.

Lisez les explications suivantes pour en savoir plus sur les différents réglages du régulateur PID.

습\CONFIG	PID Controller	
PID	#1	
Chan	None	
Display For	M2	
PID Hold	Off	
PID A/M	Auto	
< 1/2	>	t

Le M800 est équipé de 2 régulateurs PID. Appuyez sur le champ **PID**, puis sélectionnez le régulateur PID que vous souhaitez configurer en appuyant sur #1 pour le régulateur PID 1, #2 pour le régulateur PID 2, etc.

Appuyez sur le champ **Chan** pour affecter la voie associée. Sélectionnez la voie que vous souhaitez associer au régulateur PID. Pour désactiver le régulateur PID, appuyez sur « None » (aucun).

Appuyez sur le bouton permettant d'affecter un paramètre de mesure (en fonction de la voie sélectionnée) à associer au régulateur PID. Choisissez le paramètre de mesure en appuyant sur le champ correspondant. « Mx » indique la mesure affectée au régulateur PID. (voir la section 8.1.1 « Config des voies »).

Le M800 permet d'afficher la sortie de contrôle (%PID) du régulateur PID dans la fenêtre d'accueil et la fenêtre de menu. Appuyez sur le champ **affichage pour** pour afficher la sortie de contrôle souhaitée.

REMARQUE : la sortie de contrôle du régulateur PID s'affichera à la place de la mesure qui a été définie pour être affichée dans la ligne correspondante (voir la section 8.1.1 « Config des voies »).

Avec le paramètre **PID HOLD**, sélectionnez l'état de la sortie de contrôle du régulateur PID si le transmetteur M800 est en mode « Maintien ». « Off » signifie que le pourcentage de la sortie de contrôle sera de 0 % si le transmetteur est en mode « Maintien ». Si vous choisissez « Last Value », la valeur du signal de sortie du contrôle avant que le transmetteur ne passe en mode « Maintien » sera utilisée.

Le paramètre **PID A/M** vous permet d'indiquer le mode de fonctionnement du régulateur PID (automatique ou manuel). Si vous choisissez « Auto », le transmetteur calcule le signal de sortie à partir de la valeur mesurée et des paramètres du régulateur PID. Si vous sélectionnez « Manuel », deux autres boutons fléchés apparaissent dans la fenêtre de menu à l'endroit où le signal de sortie est affiché. Appuyez sur les flèches pour augmenter ou diminuer le signal de sortie PID.

REMARQUE : si vous avez choisi « Manuel », les valeurs indiquées pour les constantes de temps, le gain, les points excentrés, les limites proportionnelles, la valeur de consigne et la zone morte n''influencent pas le signal de sortie.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

d∿co	NFIG\PID Contro	oller
PID Mode	Relay PL	1
Out	1 None	2 None
Pulse Len	#h1	sec
Gain	1.00	ן נ
minutes	Tr 0.000	000.0 bT
< 1	213 >	÷

Mode PID affecte un relais ou une sortie analogique pour le contrôle du PID. Selon le dispositif de contrôle utilisé, sélectionnez une des trois options proposées (« Relai Long », « Relai Freq» et « Sortie ana») en appuyant sur le champ correspondant.

Relai Long :	si vous utilisez une électrovanne, sélectionnez « Relai Long »
	(longueur d'impulsion du relais).
Relai Freq :	si vous utilisez une pompe doseuse à entrée d'impulsion,
	sélectionnez « Relai Freq » (fréquence d'impulsion du relais).
Sortie ana :	pour utiliser une sortie analogique, sélectionnez « Sortie ana ».

Associez le signal de sortie **Out1,2** du régulateur PID à la sortie du transmetteur souhaitée. Appuyez sur le bouton correspondant à « Out 1 » et « Out 2 » pour sélectionner le nombre correspondant au signal. #1 correspond au relais 1 ou à la sortie analogie 1, #2 correspond au relais 2 ou à la sortie analogique 2, etc.

REMARQUE : prenez soin de vérifier si les relais de type Reed sont associés à la fonction de régulation. Les relais de type Reed peuvent être utilisés par les dispositifs de contrôle de la fréquence d'impulsion et les applications peu exigeantes. L'alimentation est limitée à 0,5 A et 10 W (voir aussi la section 15.2 « Caractéristiques électriques »). Ne raccordez pas ce relais à des dispositifs qui nécessitent une alimentation plus élevée.

Si le mode du PID («Mode PID ») est défini sur « Relai Long », vous pouvez ajuster la longueur d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Long impulsion**. Un clavier apparaîtra pour modifier la valeur. Saisissez la nouvelle valeur en secondes en vous aidant du tableau ci-dessous, puis appuyez sur **-**.

REMARQUE : une longueur d'impulsion plus importante réduit l'usure de l'électrovanne. Le pourcentage de temps « actif » du cycle est proportionnel à la sortie de contrôle.

	1 ^{re} position de relais (Out 1)	2º position de relais (Out 2)	Longueur d'impulsion (PL)
Conductivité	Contrôle de l'alimentation en réactif concentré	Contrôle d'eau de dilution	Une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 secondes
pH/redox	Alimentation en base	Alimentation en acide	Cycle d'ajout de réactif : une faible longueur d'impulsion assure un ajout de réactif plus uniforme. Point de départ suggéré = 10 secondes
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Durée du cycle d'alimentation : une faible longueur d'impulsion (PL) assure une alimentation plus uniforme. Point de départ suggéré = 30 secondes

Si le mode du PID (« Mode PID ») est défini sur « Relai Freq », vous pouvez ajuster la fréquence d'impulsion du signal de sortie du transmetteur. Appuyez sur le bouton **Fréq impulsion** et saisissez la nouvelle valeur en impulsion/minute en vous aidant du tableau ci-dessous.

REMARQUE : réglez la fréquence d'impulsion sur la valeur maximale admise pour la pompe spécifique utilisée ; en général 60 à 100 impulsions/minute. La régulation produit cette fréquence lorsque la sortie est optimale.

ATTENTION : un réglage trop élevé de la fréquence d'impulsion peut entraîner une surchauffe de la pompe.

	1 ^{re} position de relais = #3	2° position de relais = #4	Fréquence d'impulsion (PF)
Conductivité	Contrôle de l'alimentation en produit chimique concentré	Contrôle d'eau de dilution	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)
pH/redox	Alimentation en base	Alimentation en acide	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe	Max. autorisé pour la pompe utilisée (généralement 60 à 100 impulsions/minute)

Si le mode du PID (« Mode PID ») est défini sur « **Aout** », vous pouvez sélectionner le type de signal de sortie analogique du transmetteur. Appuyez sur le bouton correspondant pour choisir le type de signal de sortie (4-20 mA ou 0-20 mA).

Pour affecter le signal de sortie analogique, consultez le tableau ci-dessous.

	1 ^{re} position du signal analogique = Out 1	2° position du signal analogique = Out 2
Conductivité	Contrôle de l'alimentation en produit chimique concentré	Contrôle d'eau de dilution
pH/redox	Alimentation en base	Alimentation en acide
Oxygène dissous	Contrôle en action inversée	Contrôle en action directe

Appuyez sur le champ **Gain** pour saisir le gain du régulateur PID (sans unité). « Gain » représente la valeur maximale du signal de sortie du régulateur PID en pourcentage (valeur 1 équivaut à 100 %).

Appuyez sur le champ **min** pour modifier le temps de réinitialisation (ou temps intégral) **Tr** (champ gauche) et/ou le temps dérivé (ou intervalle) **Td** (champ droit).

REMARQUE : le gain, le temps intégral et le temps dérivé sont généralement réglés ultérieurement en tâtonnant en fonction de la réaction du procédé. Il est recommandé de commencer avec la valeur Td = 0.

Des paramètres supplémentaires peuvent être définis en accédant à la page suivante du menu.

L'écran affiche la courbe du régulateur PID. Elle présente des boutons pour saisir les points excentrés, la valeur de consigne et la limite proportionnelle pour 100 %.

Appuyez sur le bouton CP pour accéder au menu où vous pouvez modifier les points excentrés.

La page 1 comporte les paramètres de la valeur minimale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Allez à la page 2 pour consulter les paramètres de la valeur maximale des points excentrés. Appuyez sur le bouton correspondant pour modifier la valeur du paramètre du procédé et du signal de sortie associé en %.

Appuyez sur le bouton SP pour modifier la valeur de consigne et la zone morte.

Appuyez sur le bouton **Lim** pour modifier les limites proportionnelles maximale et minimale ; elles correspondent à la plage où une régulation est nécessaire.

8.13 Service

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Service

Ce menu est un outil précieux pour le dépannage et permet de diagnostiquer les éléments suivants : «clavier tactile », « Par sortie ana », « Lire sortie mA », « lire entrée mA » (lecture des entrées analogiques), « Config relais » (réglage des relais), « Lire Relais » (lecture des relais), « Lire entrée numérique » (lecture des entrées numériques), « Mémoire», « Affichage » et sondes optiques à oxygène dissous.

Dans le champ System, sélectionnez l'élément que vous souhaitez diagnostiquer.

Dans **Chan**, sélectionnez la voie pour consulter les informations de diagnostic de la sonde. Ce menu apparaît uniquement si une sonde est connectée.

La fonction de diagnostic peut maintenant être sélectionnée en appuyant sur le bouton **Diagnostic**.

8.13.1 Réglage des sorties analogiques

Ce menu permet à l'utilisateur de régler toutes les sorties analogiques sur une valeur en mA comprise dans la plage 0-22 mA. Utilisez les boutons + et - pour ajuster le signal de sortie en mA. Le transmetteur ajustera les signaux de sortie en fonction de la mesure et de la configuration des signaux de sortie analogiques.

Set Aout Diagnostic

CHAN_2 Diagnostic

+

() ()

> fill CON

> > 0%

CP

SP

Lim

8.13.2 Lecture des sorties analogiques

Ce menu affiche la valeur en mA des sorties analogiques.

8.13.3 Lecture des entrées analogiques

Ce menu affiche la valeur en mA des signaux d'entrée analogiques.

8.13.4 Réglage des relais

Ce menu permet à l'utilisateur d'ouvrir et de fermer chaque relais manuellement. Si l'utilisateur quitte le menu, le transmetteur ouvrira ou fermera le relais en fonction de sa configuration.

8.13.5 Lecture des relais

Ce menu affiche l'état de chaque relais. « On » indique que le relais est fermé ; « Off » indique que le relais est ouvert.

8.13.6 Lecture des entrées numériques

Ce menu affiche l'état des signaux d'entrée numérique

8.13.7 Mémoire

Si vous sélectionnez « Memory », le transmetteur testera la mémoire de toutes les cartes des sondes ISM et des transmetteurs connectés.

8.13.8 Écran

L'écran du transmetteur s'affiche toutes les 5 secondes en rouge, vert, bleu, gris, puis en gris foncé, avant de revenir au menu de maintenance. Si vous appuyez sur l'écran avant la fin des 5 secondes au passage de chaque couleur, le transmetteur passera à l'étape suivante.

8.13.9 Étalonnage du clavier tactile

Pendant les 4 étapes d'étalonnage, appuyez toujours au centre des cercles affichés dans les 4 coins de l'écran. Le transmetteur affichera le résultat de l'étalonnage.

8.13.10 Diagnostic des voies

Si la sonde rencontre un problème, un message d'erreur correspondant apparaît.

8.14 Assistance technique

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Technical Service

Ce menu protégé par mot de passe ne peut être utilisé que par l'équipe de maintenance de METTLER TOLEDO.

Ce menu comprend les facteurs d'étalonnage des signaux de sortie et d'entrée analogique.

Dans le champ **Options**, sélectionnez les signaux dont vous souhaitez afficher les facteurs d'étalonnage.

8.15 Gestion des utilisateurs

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Gestion utilisateur

Ce menu permet de configurer les différents mots de passe de l'utilisateur et de l'administrateur, et de dresser une liste des menus auxquels peuvent accéder les utilisateurs. L'administrateur dispose de droits pour accéder à tous les menus. Pour les transmetteurs neufs, tous les mots de passe par défaut sont « 00000000 ».

CONFIG User Management		
Protection	orr	
Option	User1	
UserID	2502	
Password	Change Password	
Access	Access Configure	
	← _	

Appuyez sur le champ **Protection** pour sélectionner le type de protection souhaité.

Les options suivantes sont disponibles :

Off (Désactivé) : Aucune protection

- Actif : L'ouverture de la fenêtre de menu (voir la section 3.2.2 « Ouvrir la fenêtre de menu ») doit être confirmée.
- Mot de passe : La fenêtre de menu ne peut être ouverte qu'avec un mot de passe.

Appuyez sur le bouton **Option** pour sélectionner le profil de l'administrateur (Admin) ou le profil d'un des utilisateurs.

REMARQUE : l'administrateur dispose des droits pour accéder à tous les menus. Il est possible de définir les droits d'accès de plusieurs utilisateurs.

Appuyez sur le bouton **Utilisateur** pour saisir le nom de l'utilisateur ou de l'administrateur. Le nom de l'utilisateur ou de l'administrateur s'affichera si la protection par mot de passe est sélectionnée pour ouvrir la fenêtre de menu.

Pour modifier le mot de passe de l'utilisateur sélectionné ou de l'administrateur, appuyez sur le champ **Password**. Saisissez l'ancien mot de passe dans le champ « Ancien mdp », le nouveau mot de passe dans le champ « nouveau mdp », puis confirmez le mot de passe dans le champ « Confirmer mdp ». « 00000000 » est le mot de passe par défaut pour l'administrateur et tous les utilisateurs.

Si vous sélectionnez un profil d'utilisateur, un champ supplémentaire apparaît pour définir les droits d'accès.

Pour attribuer les droits d'accès, vous devez appuyer sur le bouton du menu correspondant. Lors de l'attribution des droits d'accès, le symbole \checkmark apparaît dans le bouton associé.

8.16 RAZ

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ RAZ

Différentes options de réinitialisation sont disponibles en fonction de la version et de la configuration du transmetteur.

Lisez les explications suivantes pour en savoir plus sur les différents réglages pour la réinitialisation des données et/ou des configurations.

8.16.1 Réinitialisation du système

Ce menu permet de réinitialiser le transmetteur M800 aux réglages d'usine (suppression des valeurs de consigne, des sorties analogiques, des mots de passe, etc.). En outre, les facteurs d'étalonnage des sorties et des entrées analogiques, et du transmetteur peuvent être réinitialisés aux dernières valeurs d'usine.

Appuyez sur le champ Options et sélectionnez « Système ».

Appuyez sur le champ **Point** (bouton configurer) et sélectionnez les différents éléments de configuration à réinitialiser.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

8.16.2 Réinitialisation de l'étalonnage des sondes optiques à oxygène dissous

Si une sonde optique à oxygène est connectée au transmetteur, un menu vous permet de réinitialiser les données d'étalonnage de la sonde aux réglages d'usine.

Appuyez sur le champ **Options** et sélectionnez la voie sur laquelle est connectée la sonde optique à oxygène dissous.

Appuyez sur le champ **Point** (bouton Configurer). Sélectionnez « SensorCal to Factory » en appuyant sur le bouton approprié.

Si vous avez sélectionné « SensorCal to Factory », le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

REMARQUE : la réinitialisation des données d'étalonnage remet le minuteur d'étalonnage adaptatif à 0 (voir la section 9.1 « iMonitor »).

REMARQUE : pour garantir de meilleurs résultats de mesure, un nouvel étalonnage de la sonde est recommandé après une réinitialisation des données d'étalonnage aux réglages d'usine. En fonction de l'application et de la sonde, l'étalonnage peut être exécuté comme un étalonnage en un point ou un étalonnage en deux points (voir la section 7.7 « Étalonnage des sondes à oxygène optiques (Sondes ISM uniquement) »).

8.16.3 Réinitialisation de l'étalonnage des sondes UniCond2e

Pour les sondes UniCond2e, les paramètres « SensorCal » (étalonnage de la sonde) et « ElecCal » (étalonnage électronique de la sonde) peuvent être réinitialisés aux réglages d'usine.

Appuyez sur le champ **Options** et sélectionnez la voie sur laquelle est connectée la sonde UniCond2e.

Appuyez sur le champ **Item** (bouton Configurer). Sélectionnez « Retour param. usine-sonde » et/ ou « retour param. usine-Electr » en cochant la case adjacente. Appuyez sur ← pour accepter la valeur.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

Le M800 ouvrira la fenêtre de confirmation. Sélectionnez « Oui » pour procéder à la réinitialisation. Appuyez sur « Non » pour revenir au menu « RAZ » sans procéder à la réinitialisation.

8.16.4 Réinitialisation du débit cumulé

Vous pouvez réinitialiser la valeur du débit cumulé de chaque voie sur les modèles du transmetteur M800 qui acceptent des signaux de débit.

Appuyez sur le champ **Options** et sélectionnez la voie dont la valeur de débit cumulé doit être réinitialisée.

Appuyez sur le champ **Point** (bouton Configurer). Sélectionnez « Total Flow » en cochant la case adjacente. Appuyez sur le bouton ← pour accepter la valeur.

Si vous avez sélectionné « Total Flow », le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

Le M800 ouvrira la fenêtre de confirmation. Sélectionnez « Oui » pour procéder à la réinitialisation. Appuyez sur « Non » pour revenir au menu « RAZ » sans procéder à la réinitialisation.

8.16.5 Réinitialisation de la mesure du CO₂ hi

Si une sonde de conductivité thermique du CO₂ dissous est connectée au transmetteur, un menu vous permet de réinitialiser le circuit de mesure de la sonde.

Si la sonde détecte une erreur, la sonde fonctionnera en mode Protection. Le circuit de mesure électronique sera arrêté pour protéger la sonde et devra être réactivé une fois le problème résolu pour assurer la précision des mesures de CO₂.

Appuyez sur le champ **Options** et sélectionnez la voie connectée à la sonde à CO_2 qui doit être réinitialisée.

Appuyez sur le champ **Point** (bouton Configurer). Sélectionnez « CO₂ Mesure » en cochant la case adjacente. Appuyez sur le bouton ← pour accepter la valeur.

Si vous avez sélectionné « CO_2 Measurement », le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

Le M800 ouvrira la fenêtre de confirmation. Sélectionnez « Oui » pour procéder à la réinitialisation. Appuyez sur « Non » pour revenir au menu « RAZ » sans procéder à la réinitialisation.

8.16.6 Réinitialisation de la sonde de turbidité

Si une sonde de turbidité est connectée au transmetteur, un menu vous permet de réinitialiser les données d'étalonnage de la sonde aux réglages d'usine.

Appuyez sur le champ **Options**. Sélectionnez « Turb » pour les sondes de turbidité analogiques (InPro 8000). Sélectionnez « ISM » pour les sondes de turbidité numériques (InPro 8600i).

Appuyez sur le champ **Point** (bouton Configurer). Cochez la case de l'élément à réinitialiser. Appuyez sur le bouton ← pour accepter la valeur.

Si vous avez sélectionné un élément, le menu Action s'affiche. Appuyez sur le bouton « RAZ » (réinitialiser).

8.17 Sortie RS485

CHEMIN D'ACCÈS : 🗥 \ CONFIG \ Sortie RS485

Cette option vous permet d'imprimer ou de transférer les mesures de plusieurs voies dans le journal des données via la sortie RS485. L'utilisateur peut modifier les paramètres, tels que l'intervalle d'impression et le nombre de mesures à imprimer par ligne.

Sélectionnez «Mode sortie », « désactivé », «imprimante », « journal » ou « Requête ».

8.17.1 Configuration de la sortie de l'imprimante

Le menu Imprimante vous permet de configurer la sortie RS485 du M800 afin d'envoyer des données vers une imprimante. Vous pouvez définir les paramètres d'impression pour que l'imprimante imprime jusqu'à 6 mesures de configuration sur des lignes distinctes, pour chaque entrée disponible, y compris les voies d'entrée à impulsion. À chaque cycle d'impression, seront imprimées une ligne d'en-tête avec des données et l'heure indiquée par l'horloge interne du M800, ainsi qu'une ligne pour chaque mesure configurée, telle que la voie, la description de la mesure, la valeur de la mesure et l'unité de mesure.

Les données imprimées apparaîtront de la manière suivante :

11/Mai/2012 15:36

- Ch Nom de la mesure
- 1 CHAN_1 302 ppbC
- 2 CHAN_2 0,54 uS/cm
- 3 CHAN_3 7,15 pH

	RS485 Output
Output Mode	Printer
Lines to Print	4
Output Time	60 minutes
	Configure
	<u></u>

Pour définir les paramètres d'impression, sélectionnez l'option « Mode imprimante ». Configurez les options suivantes :

Lignes à imprimer permet de configurer le nombre de mesures à imprimer pour chaque cycle d'impression. Saisissez le nombre total de mesures à configurer pour l'impression.

Temps sortie permet de définir la durée en minutes entre chaque cycle d'impression. L'intervalle d'impression peut être compris entre 1 et 1 000 minutes.

៨	CONFIG RS485 Output			
and	RS4	85 Output Co	rfigure	
Outu	1 [ISM	EBC90	
Lines	2 [ISM	EBC25	
Output	з [ISM	EBCC	
	4 [ISM	None	
<u>ل</u>				
				5

Une fois l'intervalle d'impression et les lignes à imprimer définis, appuyez sur le bouton « Configure » pour configurer la mise en pages. Le numéro situé à gauche de la fenêtre indique l'ordre d'apparition des lignes sur l'impression. Dans le premier menu déroulant, sélectionnez la voie à laquelle est connectée la sonde souhaitée. Cette liste déroulante affiche le nom des voies que vous avez configurées dans « Paramètrage ». Dans la deuxième liste déroulante, sélectionnez l'unité de mesure à afficher. Notez que si vous sélectionnez plus de 4 lignes d'impression, utilisez les boutons < et > pour naviguer entre les pages à configurer.

8.17.2 Configuration du journal de données

	S485 Output	
Output Mode	Data Log	
Measures to Send	4	
Output Time	60 sec	
	Configure	
Send Header	No	
		5

Sélectionnez l'option « Mode journal ». Configurez les options suivantes :

Mesure à envoyer vous permet de configurer le nombre de mesures à imprimer sur une seule ligne. Saisissez le nombre total de mesures à configurer pour l'impression.

Temps sortie permet de définir la durée d'impression d'une ligne complète en secondes ou minutes. Une heure (3 600 secondes) représente la durée maximale.

Si vous sélectionnez « Yes » pour l'option **Envoyer l'en-tête**, une en-tête sera envoyée au port RS485 immédiatement. « No » est défini par défaut.

CONFIG1RS485 Output				
Ortered	RS485 Output Configure			
Cupu	1	ISM	EBC90	
Lines	2	ISM	EBC25	
Output	3	ISM	EBCC	
	4	ISM	None	
			Ļ	
				5

Une fois l'intervalle d'impression et les mesures à envoyer définis, appuyez sur le bouton « Configure » pour configurer la mise en pages. Le numéro situé à gauche de la fenêtre indique l'ordre d'apparition des lignes sur l'impression. Dans le premier menu déroulant, sélectionnez la voie à laquelle est connectée la sonde souhaitée. Cette liste déroulante affiche le nom des voies que vous avez configurées dans « Paramètrage ». Dans la deuxième liste déroulante, sélectionnez l'unité de mesure à afficher. Notez que si vous sélectionnez plus de 4 lignes d'impression, utilisez les boutons < et > pour naviguer entre les pages à configurer.

8.18 Interface de mesures USB

L'utilisateur peut accéder aux mesures via USB. Pour cela, l'utilisateur doit indiquer une commande, après quoi le M800 répond de la manière suivante.

REMARQUE : La première occurrence de 0x02 correspond au numéro d'identification du M800, qui doit toujours être 0x02. La deuxième occurrence de 0x02 correspond à la longueur, qui doit toujours être 0x02. Le M800 peut uniquement répondre M1~M4. XXXXXXX correspond à la valeur flottante de la mesure en ASCII. uuuuuu correspond à l'unité en ASCII. Si l'unité actuelle ne dépasse pas les 6 caractères, le format est aligné à droite. Par exemple, si l'unité est le pH, la réponse est " pH". <cr> signifie Retour à la ligne (0x0D, 0x0A)

Si la commande envoyée est incorrecte, un message d'erreur est généré. Format de la réponse en cas d'erreur : "ERROR #xx"

xx correspond au code de l'erreur

01 : Opcode invalide ---- si différent de D.

02 : Erreur paramètre ---- si x est différent de 1-6

07 : Erreur longueur ---- si la longueur est différente de 2

9 ISM

Pour consulter la structure du menu, reportez-vous à la section 3.4.1 « Structure du menu ».

CHEMIN D'ACCÈS : ₼ \ ISM

9.1 iMonitor

CHEMIN D'ACCÈS : 🗥 \ ISM \ iMonitor

iMonitor permet à l'utilisateur de connaître l'état de la chaîne complète en un coup d'œil.

L'interface iMonitor de la première voie s'affiche à l'écran. Pour naviguer dans l'interface des différentes voies, appuyez sur > en bas de l'écran.

Les valeurs « DLI », « TTM », et la valeur « TTCal » des sondes UniCond2e sont affichées dans un bargraphe. Si ces valeurs baissent sous les 20 % de la valeur initiale, le bargraphe passe du vert au jaune. Si ces valeurs baissent sous les 10 %, le bargraphe devient rouge.

Pour les sondes Cond4e, les jours de fonctionnement de la sonde sont affichés.

En outre, les cycles SEP, NEP, Autoclavage, SAN et les valeurs de Rg et Rref peuvent être affichés et attribués à un bouton de couleur si les valeurs sont fournies par la sonde.

La couleur du bouton associé aux cycles SEP, NEP, Autoclavage et SAN passera du vert au jaune s'il reste moins de 20 % de la quantité maximale définie et deviendra rouge s'il reste moins de 10 %. Pour savoir comment définir la quantité maximale du cycle, reportez-vous à la section 8.5 « Configuration d'ISM (sondes ISM uniquement) ».

Les boutons associés aux valeurs Rg et Rref deviennent jaunes si les conditions d'un avertissement sont remplies et rouges si les conditions d'une alarme sont remplies. Ces boutons restent gris si l'alarme ISM correspondante n'est pas configurée (voir la section 8.7 « ISM / Alarme capteur »).

En fonction du paramètre concerné (sonde connectée), les données suivantes sont disponibles dans le menu iMonitor :

pH :	DLI, TTM (pour pH/PNA uniquement), ACT, NEP, Autoclavage, SEP*, Rg**, Rref**
O ₂ ampérométrique :	DLI, TTM, ACT, NEP, AutoClave, SEP*, Électrolyte***
O ₂ optique :	DLI, ACT, NEP, AutoClave, SEP*
Ozone :	DLI, TTM, ACT, SAN
Cond. :	Jours de fonctionnement, TTCal****, NEP, SEP
Turbidité :	Conditions de la sonde, telles que l'humidité, la température, les heures
	de fonctionnement, la lumière diffuse et la température max

- * Dans le cas où l'Autoclavage n'a pas été activé (voir la section 8.7 « ISM / Alarme capteur »)
- ** Dans le cas où l'alarme pour Rg et/ou Rref a été activée (voir la section 8.7 « ISM / Alarme capteur »)
- *** Dans le cas où l'alarme pour « Erreur niveau électrolyte » n'a pas été activée (voir la section 8.7 « ISM / Alarme capteur »)
- **** Dans le cas où la sonde UniCond2e est connectée

9.2 Messages

CHEMIN D'ACCÈS : 🗥 \ ISM \ Messages

Ce menu répertorie les avertissements et les alarmes en cours. Il peut afficher jusqu'à 100 messages.

5 messages sont affichés sur chaque page. S'il existe plus de 5 messages, d'autres pages apparaîtront.

Les alarmes et/ou les avertissements non acquittés sont affichés en haut de la liste. La liste affiche ensuite les alarmes et les avertissements acquittés mais toujours en cours. Les alarmes et les avertissements déjà acquittés s'affichent en bas de de la liste. Les messages sont triés dans l'ordre chronologique à l'intérieur de chaque groupe.

L'état de l'avertissement ou de l'alarme est indiqué de la manière suivante :

Bouton rouge clignotant	Une alarme est présente et n'a pas été acquittée
Bouton rouge statique	Une alarme est présente et a été acquittée
Bouton jaune clignotant	Un avertissement est présent et n'a pas été acquitté
Bouton jaune statique	Un avertissement est présent et a été acquitté
Bouton gris statique	Un avertissement ou une alarme a été résolu

Pour acquitter une alarme ou un avertissement, appuyez sur le bouton **Info** situé sur la ligne correspondante.

Vous pouvez appuyer sur le bouton **Info** pour chaque message. Vous y trouverez la description du message, la date et l'heure à laquelle l'alarme ou l'avertissement s'est déclenché et l'état de l'alarme ou du message.

Si l'avertissement ou l'alarme a déjà été résolu, la fenêtre contextuelle du message affiche un autre bouton pour effacer le message (c'est-à-dire le supprimer de la liste des messages).

9.3 Diagnostics ISM

CHEMIN D'ACCÈS : A \ ISM \ Diagnostics ISM

Le transmetteur M800 propose un menu de diagnostic pour toutes les sondes ISM. Allez dans le menu « Voie » et sélectionnez la voie correspondante en appuyant sur le champ associé.

Différents menus de diagnostic s'affichent en fonction de la voie sélectionnée et de la sonde affectée. Lisez les explications suivantes pour en savoir plus sur les différents menus de diagnostic.

9.3.1 Électrodes pH/redox et sondes à oxygène, ozone et Cond4e

Si une électrode de pH/redox, une sonde à oxygène, à ozone ou Cond4e est connectée à la voie sélectionnée, vous pouvez accéder aux menus « Cycles », « Surveill. capteur » et « température Max. ».

Appuyez sur le bouton **Cycle** pour afficher les informations sur les cycles NEP, SEP et Autoclavage de la sonde connectée. Les informations affichées indiquent le nombre de cycles auxquels la sonde a été soumises et la limite max. du cycle correspondant telle que définie dans le menu de Configuration ISM (voir la section 8.5 « Configuration d'ISM (sondes ISM uniquement) »).

REMARQUE : Pour les sondes Cond4e et les sondes optiques à oxygène dissous, qui ne sont pas autoclavables, le menu des cycles d'autoclavage n'est pas affiché.

 \sim

REMARQUE : pour les sondes à ozone, les cycles SAN sont affichés.

Appuyez sur le bouton **Surveill. capteur** pour afficher les informations « DLI », « TTM » et « ACT » de la sonde connectée. Les valeurs « DLI », « TTM » et « ACT » sont affichées dans un bargraphe. Si ces valeurs baissent sous les 20 % de la valeur initiale, le bargraphe passe du vert au jaune. Si ces valeurs baissent sous les 10 %, le bargraphe devient rouge.

REMARQUE : pour les sondes optiques à oxygène dissous, il n'y a pas de TTM.

REMARQUE : pour les sondes Cond4e, les jours de fonctionnement sont affichés.

Appuyez sur le bouton **Température Max.** pour afficher les informations sur la température maximale connue par la sonde connectée, ainsi que la date et l'heure à laquelle elle est survenue. Cette valeur est enregistrée dans la sonde et ne peut pas être modifiée. La température maximale n'est pas enregistrée pendant l'autoclavage.

REMARQUE : pour les sondes optiques à oxygène dissous, la température maximale de la carte de la sonde et de la zone est affichée.

9.3.2 Sondes UniCond2e et UniCond4e

Pour les sondes UniCond2e et UniCond4e, les éléments de diagnostic suivants peuvent être consultés : « Compteur dépass » (qui comprend les éléments « Temp élevée » et « conductivité haute »), « Mesures les plus hautes » (qui comprend les éléments « Temp max » et « Cond max ») et « Cycles » (qui comprend les éléments « cycles NEP » et « cycles SEP »).

9.4 Données d'étalonnage

CHEMIN D'ACCÈS : 🗥 \ ISM \ données cal

Le transmetteur M800 offre un historique d'étalonnage pour toutes les sondes ISM. L'historique d'étalonnage fournit différentes données en fonction de la voie sélectionnée et de la sonde affectée.

Lisez les explications suivantes pour en savoir plus sur les différentes données de l'historique d'étalonnage.

9.4.1 Données d'étalonnage de toutes les sondes ISM (excepté les sondes UniCond2e et UniCond4e)

Si une sonde ISM (excepté les sondes UniCond2e et UniCond4e) est connectée à la voie sélectionnée, les données d'étalonnage suivantes sont affichées.

Actual (étalonnage réel) :

Usine (étalonnage en usine) :

jeu de données d'étalonnage utilisé pour les mesures. Ce jeu de données passe en position « Cal1 » après un nouveau réglage.

jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.

1 er ajustage :	premier réglage après l'étalonnage en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.
Call (dernière vérif/réglage) :	jeu de données du dernier étalonnage/réglage exécuté. Ce jeu de données passe en position « Cal2 », puis « Cal3 » lorsqu'un nouvel étalonnage ou un nouveau réglage est effectué. Après ce niveau, le jeu de données n'est plus disponible. « Cal2 » et « Cal3 » fonctionnent de la même manière que « Cal1 ».
Cal2 et Cal3 peuvent être sélection appuyez sur le champ corresponde	nés. Pour sélectionner le jeu de données d'étalonnage, ant.

REMARQUE : les jeux de données « Cal1 », « Cal2 », « Cal3 » et «Ajustage 1 » ne sont pas présents sur la sonde à oxygène ampérométrique de THORNTON et la sonde à ozone.

Appuyez sur le bouton **Cal Data** pour afficher le jeu de données d'étalonnage correspondant. L'horodatage de l'étalonnage et l'ID utilisateur sont affichés.

REMARQUE : cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou de réglage (voir la section 8.11 « Système »).

REMARQUE : les sondes ISM de turbidité proposent uniquement un étalonnage procédé de la pente ou du décalage. Les données de l'étalonnage procédé sont stockées dans « Actual ». La réinitialisation des données d'origine s'effectue dans le menu « RAZ ».

9.4.2 Données d'étalonnage des sondes UniCond2e et UniCond4e

Pour les sondes UniCond2e et UniCond4e, vous pouvez sélectionner les trois jeux de données d'étalonnage suivants :

Actuel (étalonnage réel) : jeu de données d'étalonnage utilisé pour les mesures.

Usine (étalonnage en usine) : jeu de données d'origine, déterminé en usine. Ce jeu de données est conservé dans la sonde à titre de référence et ne peut pas être effacé.

Cal1 (dernier étalonnage/réglage) : jeu de données du dernier étalonnage/réglage exécuté.

Appuyez sur le bouton « Données cal» pour afficher le jeu de données d'étalonnage correspondant.

Si vous avez sélectionné le jeu de données d'étalonnage réel à la page 1, la date et l'heure de l'étalonnage, l'ID utilisateur, les constantes de l'étalonnage de la conductivité et les valeurs de conductivité de référence utilisées pour l'étalonnage sont affichés. La page 2 indique les valeurs de conductivité mesurées et l'écart entre les valeurs mesurées et les valeurs de référence. Les pages 3 et 4 indiquent les mêmes informations pour la température. La page 5 affiche les cycles d'étalonnage propres à la sonde et la prochaine date d'étalonnage de la conductivité (C) et de la température (T).

Si vous avez sélectionné le jeu de données d'étalonnage en usine à la page 1, la date et l'heure de l'étalonnage, les constantes de l'étalonnage de la conductivité et les valeurs de conductivité de référence utilisées pour l'étalonnage sont affichés. La page 2 affiche les mêmes valeurs pour la température.

Appuyez sur
 pour quitter le menu « Cal Data ».

REMARQUE : cette fonction nécessite le réglage adéquat de la date et de l'heure pendant les tâches d'étalonnage et/ou de réglage (voir la section 8.11 « Système »).

9.5 Info capteur

CHEMIN D'ACCÈS : 🖄 \ ISM \ Info capteur

Vous pouvez afficher sur l'écran le modèle, la version du matériel et du logiciel, la dernière date d'étalonnage ainsi que le numéro de produit et de série des sondes ISM connectées au transmetteur M800.

Appuyez sur « Info capteur».

Les informations de la première voie à laquelle est connectée une sonde sont affichées à l'écran. Appuyez sur le champ « Chan ». Pour consulter les informations de la sonde souhaitée, sélectionnez la voie correspondante en appuyant sur le champ associé.

Les informations suivantes sont affichées : « Modèle », «Date Cal » (date du dernier étalonnage), « S/N » (numéro de série), « P/N » (numéro du produit), « SW Ver » (version du logiciel) et « HW Ver » (version du matériel).

REMARQUE : si une sonde UniCond2e est connectée, les informations suivantes sont également affichées : « Temp Sens » (sonde de température), « Electrode » (matériau de l'électrode), « Body/Ins Mat: » (matériau de l'isolant et/ou du corps), « Corps isolant » (matériau de l'électrode interne), « Outer » (matériau de l'électrode externe), « Fitting: » (matériau des raccords), « Class VI » (matériau de classe VI conforme à la FDA).

Pour quitter le menu « Sensor Info », appuyez sur ← . Pour revenir à la fenêtre de menu, appuyez sur 奋.

9.6 Version /logiciel

CHEMIN D'ACCÈS : 🗥 \ ISM \ Version logiciels

Vous pouvez afficher sur l'écran la version du matériel et du logiciel ainsi que le numéro de produit et de série du transmetteur M800 ou des différentes cartes qui y sont connectées.

🚮 នោភា អ	W / SW Version	
M800	Transmitter	
S/N	0000000001	
P/N	58000802	
SW Ver:	0.23.03	
HW Ver:	В	
		-

Les informations du transmetteur sont affichées à l'écran. Appuyez sur le champ **M800**. Pour sélectionner les informations de la carte souhaitée ou du transmetteur, appuyez sur le champ correspondant.

Les informations de la carte sélectionnée ou du transmetteur suivantes sont affichées : « S/N » (numéro de série), « P/N » (numéro du produit), « SW Ver » (version du logiciel) et « HW Ver » (version du matériel).

9.7 Journal de bord

CHEMIN D'ACCÈS : 🗥 \ Journal de bord

Le transmetteur M800 dispose d'un journal de bord contenant 250 entrées. Le journal de bord fonctionne comme un buffer circulaire, c'est-à-dire que la saisie de l'entrée 251 entraîne la suppression de l'entrée 1, etc.

Les entrées indiquent la date, l'heure et la description.

E≣≀ISM\Log E	Book		
25/Oct/2010 16:27	Log Book		
25/Oct/2010 16:27	ISM		
25/Oct/2010 16:27	CAL - Save Adjust		
25/Oct/2010 16:26	Calibrate Sensor		
25/Oct/2010 16:26	CAL		
25/Oct/2010 16:25	Log Book		
		· · · ·	
< 1/15 >	>	Ξ	

10 Assistants

CHEMIN D'ACCÈS : 🗥 \ Assistants

Le transmetteur M800 permet de configurer jusqu'à 4 assistants/favoris pour accéder rapidement aux fonctions fréquemment utilisées.

10.1 Assistants config

CHEMIN D'ACCÈS : Assistant Assistant config

NUZARD \ Set Wizard	
ISM	►
CAL	•
CONFIG	►
	Ę

Les principaux menus sont affichés. Choisissez le menu contenant la fonction que vous souhaitez désigner en favori. Par exemple, sélectionnez le menu ISM en appuyant sur la flèche ► correspondante.

Choisissez la fonction que vous souhaitez désigner en favori en appuyant sur le bouton correspondant. Une fonction définie en favori est désignée par le symbole \bigstar .

REMARQUE : pour supprimer le lien vers les favoris, appuyez sur le bouton correspondant à la fonction choisie. Le symbole **★** du favori disparaît.

10.2 Accès aux favoris

Allez dans le menu « Config » (définition des favoris). Les favoris définis sont affichés sur cette page. Appuyez sur la flèche ► correspondant à la fonction de votre choix.

11 Maintenance

11.1 Nettoyage du panneau avant

Nettoyez la face avant avec un chiffon doux et humide (uniquement à l'eau, pas de solvants). Essuyez délicatement la surface et séchez-la à l'aide d'un chiffon doux.

12 Historique du logiciel

12.1 M800 Procédé

Version de logiciel	Date de sortie	Modifications du logiciel	Documentation / Problème
V2.7.00	2023	Modifications mineures du logiciel	30 307 504 E Transmetteur M800 2023

12.2 M800 Eau

Version de logiciel	Date de sortie	Modifications du logiciel	Documentation / Problème
V2.5.00	2023	Modifications mineures du logiciel	30 307 504 E Transmetteur M800 2023

130

13 Dépannage

Toute autre utilisation de l'équipement que celle spécifiée par Mettler-Toledo peut rendre inopérante la protection fournie par celui-ci.

Le tableau ci-dessous présente les causes possibles de problèmes courants :

Problème	Cause possible
Rien n'apparaît à l'écran.	Absence d'alimentation du M800.Panne du matériel.
Lectures de mesure incorrectes.	 Sonde mal installée. Saisie incorrecte du multiplicateur d'unités Compensation de température mal réglée ou désactivée. Étalonnage de la sonde ou du transmetteur requis. Câble de raccordement ou câble de sonde défectueux ou plus long que la recommandation. Panne du matériel.
Lectures de mesure instables.	 Sondes ou câbles installés trop près de l'équipement, ce qui génère beaucoup de bruit électrique. Câble plus long que la recommandation. Réglage trop bas de la moyenne. Câble de raccordement ou câble de sonde défectueux.
Bargraphe rouge ou jaune clignotant.	 La consigne est en état d'alarme (valeur de consigne dépassée). Une alarme a été sélectionnée (voir la section 8.7 « ISM / Alarme capteur ») et s'est déclenchée.
Impossible de modifier les réglages du menu.	– Utilisateur exclu pour des raisons de sécurité.

13.1 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes analogiques

Alarmes	Description
Watchdog time-out*	Défaut logiciel/système
Cellule cond ouverte*	La cellule tourne à sec (absence de solution de mesure) ou des fils sont rompus.
Court-circuit cellule cond*	Court-circuit causé par la sonde ou le câble

*Activez cette fonction dans les réglages du transmetteur

(voir la section 8.6 « Alarme générale » CHEMIN D'ACCÈS : Menu / Alarme Générale).

13.2 Liste des messages d'erreur, des avertissements et des alarmes relatifs à la conductivité (résistivité) des sondes ISM

Alarmes	Description
Watchdog time-out*	Défaut logiciel/système
Cell cond sèche*	La cellule tourne à sec (absence de solution de mesure)
Déviation cellule*	Multiplicateur hors tolérances** (selon le modèle de sonde).

* Activez cette fonction dans les réglages du transmetteur

(voir la section 8.6 « Alarme générale » CHEMIN D'ACCÈS : Menu / Alarme Générale).

** Pour plus d'informations, consultez la documentation de la sonde.

13.3 Liste des messages d'erreur, des avertissements et des alarmes relatifs au pH

13.3.1 Électrodes de pH sauf celles à double membrane

Avertissements	Description	
Avertissement pente pH trop élevée	Pente > 102 %	
Avertissement pente pH trop faible	Pente < 90 %	
Avertissement pente pH trop élevée	pH ZéroPt > mmmpH	
Avertissement décalage pH trop faible	pH ZéroP < nnnpH	
Avertissement résistance du verre faible ²	Résistance de l'électrode en verre modifiée d'un facteur inférieur à 0,3	
Avertissement résistance du verre élevée ²	Résistance de l'électrode en verre modifiée d'un facteur supérieur à 3	
Avertissement résistance de référence faible	Résistance de l'électrode de référence modifiée d'un facteur inférieur à 0,3	
Avertissement résistance de référence élevée ²	Résistance de l'électrode de référence modifiée d'un facteur supérieur à 3	
Alarmes	Description	
Erreur dépassement délai logiciel/système Watchdog	Erreur logiciel/système	
Erreur pente pH trop élevée Pente > 103 %	Pente > 103 %	
Erreur pente pH trop faible Pente < 80 %	Pente < 80 %	
Erreur décalage pH trop élevé pH ZéroPT > xxxpH	pH ZéroPt > xxxpH	
Erreur décalage pH trop faible pH ZéroPt	pH ZéroPt < yyypH	
Erreur résistance de référence élevée 1	Résistance de l'électrode de référence >150 KΩ (coupure)	
Erreur résistance de référence faible 1	Résistance de l'électrode de référence > 1 000 KΩ (court-circuit)	
Erreur résistance du verre élevée 1	Résistance de l'électrode de verre > 2 000 K Ω (coupure)	
Erreur résistance du verre faible 1	Résistance de l'électrode de verre $< 5 \text{ K}\Omega$ (court-circuit)	

1 Activez cette fonction dans les paramètres du transmetteur (voir la section 7.7 « ISM/Alarme sonde »à la page 65 CHEMIN D'ACCÈS : Menu\ISM\Alarme sonde).

2 Pour plus d'informations, reportez-vous à la documentation de la sonde.

13.3.2 Électrodes de pH à double membrane (pH/pNa)

	Description
Avertissement pente pH trop élevée	Pente > 102 %
Avertissement pente pH trop faible	Pente < 90 %
Avertissement pente pH trop élevée	pH ZéroPt > mmmpH
Avertissement décalage pH trop faible	pH ZéroP < nnnpH
Avertissement résistance du verre pNa faible	Résistance de l'électrode en verre modifiée d'un facteur inférieur à 0,3
Avertissement résistance du verre pNa élevée	Résistance de l'électrode en verre modifiée d'un facteur supérieur à 3
Alarmes	Description
Dépassement délai Watchdog	Erreur logiciel/système
Erreur pente pH trop élevée	Pente > 103 %
Erreur pente pH trop faible	Pente < 80 %
Errour décalago nH trop élové	nH 7ároDt > yyynH

Erreur décalage pH trop élevé	pH ZéroPt > xxxpH
Erreur décalage pH trop faible	pH ZéroPt < yyypH
Erreur résistance du verre pNa élevée	Résistance de l'électrode de verre > 2 000 K Ω (coupure)
Erreur résistance du verre pNa faible	Résistance de l'électrode de verre $< 5 \text{ K}\Omega$ (court-circuit)

13.3.3 Messages redox

Avertissements *	Description	
Avertissement décalage redox trop élevé	Décalage redox proche de la limite spécifiée	
Avertissement décalage redox trop faible	Décalage redox proche de la limite spécifiée	
Alarmes*	Description	

, (1 (1 (1) (1)		
Erreur décalage redox trop élevé	Le décalage redox est supérieur à la limite spécifiée	
Erreur décalage redox trop faible	Le décalage redox est inférieur à la limite spécifiée	
Error ORP ZeroPt <-60 mV	Décalage du zéro trop faible	

* Sondes ISM uniquement

13.3.4 Message ISM 2.0 pH

Avertissements	Description
Avertissement durée	La durée de stockage a expiré (s'applique uniquement aux sondes
de stockage dépassée	dont la durée de vie est spécifiée)
Avertissement mesure	Circuit de mesure des sondes presque saturé, impossible de calculer
hors limite	des valeurs de pH/redox/température fiables
Avertissement temp.	Température des composants électroniques de la sonde proche
élect. trop élevée	de la limite spécifiée
Avertissement	La membrane en verre a atteint sa durée de vie prévue et doit être
remplacement	remplacée (valable uniquement pour les sondes dotées du système
membrane en verre	de détection correspondant)
Avertissement	La référence a atteint sa durée de vie prévue et doit être remplacée
remplacement	(valable uniquement pour les sondes dotées du circuit de détection
de référence	correspondant)
Avertissement temp.	Température à l'extrémité de l'électrode proche de la limite spécifiée
procédé trop basse	
Avertissement temp.	Température à l'extrémité de l'électrode proche de la limite spécifiée
procédé trop élevée	
••	
Alarmes	Description
Erreur femp. procédé	Température à l'extrémité de la sonde inférieure à la limite spécifiée
frop basse	
Erreur temp. procédé	Température à l'extrémité de la sonde supérieure à la limite spécifiée
frop élevée	
Erreur remplacement	Les composants électroniques de la sonde ont détecté une erreur
de l'électrode	interne irrécupérable
Erreur mesure hors	Circuit de mesure de la sonde saturé, impossible de calculer des
limite	valeurs de pH/redox/température fiables
Erreur temp. élect.	La température des composants électroniques de la sonde dépasse
sonde trop élevée	la limite spécifiée

13.4 Liste des messages d'erreur, des avertissements et des alarmes relatifs à l'O₂ ampérométrique

13.4.1 Sondes de mesure de l'oxygène en forte concentration

Avertissements	Description
Warning O_2 Slope < -90 nA	Pente trop importante
Warning O_2 Slope >-35 nA	Pente trop faible
Warning O_2 ZeroPt > 0.3 nA	Décalage du zéro trop important
Warning O ₂ ZeroPt <-0.3 nA	Décalage du zéro trop faible

Alarmes	Description
Watchdog time-out*	Défaut logiciel/système
Error O ₂ Slope <-110 nA	Pente trop importante
Error O_2 Slope >-30 nA	Pente trop faible
Error O ₂ ZeroPt > 0.6 nA	Décalage du zéro trop important
Error O ₂ ZeroPt <-0.6 nA	Décalage du zéro trop faible
Electrolyte Low*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

13.4.2 Sondes de mesure de l'oxygène en faible concentration

Avertissements	Description
Warning O_2 Slope <-460 nA	Pente trop importante
Warning O_2 Slope >-250 nA	Pente trop faible
Warning O ₂ ZeroPt > 0.5 nA	Décalage du zéro trop important
Warning O_2 ZeroPt <-0.5 nA	Décalage du zéro trop faible
Alarmes	Description
Watchdog time-out*	Défaut logiciel/système
Error Install O ₂ Jumper	Avec le modèle InPro 6900, il convient d'installer un cavalier (voir la section : Connexion de la sonde – Oxygène dissous)
Error O_2 Slope <-525 nA	Pente trop importante
Error O_2 Slope > -220 nA	Pente trop faible
Error O_2 ZeroPt > 1.0 nA	Décalage du zéro trop important
Error O_2 ZeroPt <- 1.0 nA	Décalage du zéro trop faible
Electrolyte Low*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

13.4.3 Sondes de mesure de l'oxygène à l'état de traces

Avertissements	Description
Warning O_2 Slope <-5000 nA	Pente trop importante
Warning O_2 Slope >-3000 nA	Pente trop faible
Warning O_2 ZeroPt > 0.5 nA	Décalage du zéro trop important
Warning O ₂ ZeroPt <-0.5 nA	Décalage du zéro trop faible

Alarmes	Description
Watchdog time-out	Défaut logiciel/système
Error O_2 Slope <-6000 nA	Pente trop importante
Error O_2 Slope >-2000 nA	Pente trop faible
Error O_2 ZeroPt > 1.0 nA	Décalage du zéro trop important
Error O_2 ZeroPt <- 1.0 nA	Décalage du zéro trop faible
Electrolyte Low*	Niveau d'électrolyte trop bas

* Sondes ISM uniquement

🔒 xertur	2	
< CHAN_2		>
4.00	pН	
25.00	°C	
28	DLI	
180.0	mV	
ism \star		\$

13.5 Signalement des avertissements et des alarmes

13.5.1 Signalement des avertissements

Un graphique à barres jaune apparaît à l'écran pour indiquer si des conditions particulières ont généré un avertisse. Si la voie correspondante est affichée dans la fenêtre de menu ou la fenêtre d'accueil (voir la section 3.2 « Affichage »), le bargraphe jaune apparaît à côté du nom de la voie. Un message d'avertissement est enregistré et peut être sélectionné via le menu « Messages » (CHEMIN D'ACCÈS : MISM\Messages ; voir aussi la section 9.2 « Messages »).

Si une voie, qui n'est pas affichée sur la fenêtre de menu ou la fenêtre d'accueil, a généré un avertissement, un graphique à barres jaune apparaît en haut de l'écran. Un message d'avertissement est enregistré et peut être sélectionné via le menu « Messages » (CHEMIN D'ACCÈS : MISM/Messages ; voir aussi la section 9.2 « Messages »).

REMARQUE : Si l'avertissement n'est pas acquitté, le graphique à barres clignote. Si l'avertissement a déjà été acquitté, le graphique à barres s'affiche en continu à l'écran. Reportez-vous aussi à la section 9.2 « Messages ». Si une alarme ou un avertissement n'est pas acquitté(e) par l'utilisateur, l'écran du transmetteur ne se met pas en veille et ne s'éteint pas même si la durée d'éclairage est écoulée (voir section 8.9 « Configuration de l'affichage »).

REMARQUE : Si une voie génère simultanément une alarme et un avertissement, l'alarme est signalée en priorité. L'alarme est indiquée (voir la section 13.5 « Signalement des avertissements et des alarmes ») sur l'écran de menu ou la fenêtre d'accueil, alors que l'avertissement n'est pas affiché.

Messages	
Ch1Warning pHGIs change<0.3	Info
Ch1Error pH Gls Res<5MΩ	Info
Ch1Change Sensor	Info
Clear All	
	IJ

Appuyez sur le bargraphe jaune de la fenêtre de menu pour accéder aux messages. Reportez-vous à la section 9.2 « Messages » pour lire la description de ce menu.

REMARQUE : la détection de certains avertissements peut être activée/désactivée en désactivant/ activant l'alarme correspondante. Reportez-vous à la section 8.7 « ISM / Alarme capteur ».

13.5.2 Signalement des alarmes

Un bargraphe rouge apparaîtra à l'écran pour indiquer si des conditions particulières ont généré une alarme. Si la voie correspondante est affichée dans la fenêtre de menu ou la fenêtre d'accueil (voir la section 3.2 « Affichage »), le bargraphe rouge apparaît à côté du nom de la voie. Un message d'alarme est enregistré et peut être sélectionné via le menu « Messages » (CHEMIN D'ACCÈS : MISM/Messages ; voir aussi la section 9.2 « Messages »).

Si une voie, qui n'est pas affichée sur la fenêtre de menu ou la fenêtre d'accueil, a généré une alarme, un bargraphe rouge apparaît en haut de l'écran. Un message d'alarme est enregistré et peut être sélectionné via le menu « Messages » (CHEMIN D'ACCÈS : 🖄 \ISM \Messages ; voir aussi la section 9.2 « Messages »).

REMARQUE : Si l'alarme n'est pas acquittée, le bargraphe clignote. Si l'alarme a été acquittée, le bargraphe restera affiché à l'écran. Voir aussi la section 9.2 « Messages ». Si une alarme ou un avertissement n'est pas pris en compte par l'utilisateur, l'écran du transmetteur ne s'éteindra pas même si la durée d'éclairage est écoulée (voir la section 8.9 « Configuration de l'affichage »).

REMARQUE : si une voie génère simultanément une alarme et un avertissement, l'alarme sera signalée en priorité. L'alarme sera indiquée (voir la section 13.5 « Signalement des avertissements et des alarmes ») sur la fenêtre de menu ou la fenêtre d'accueil, alors que l'avertissement ne sera pas affiché.

Messages	
Ch1Warning pHGIs change<0.3	Info
Ch1Error pH Ref Res<1000Ω	Info
Ch1Warning pHRef change<0.3	info 📃
Ch1Error pH GIs Res<5MΩ	Info
Ch1Change Sensor	Info
Clear All	
	L L

 \bigcirc

$$\bigcirc$$

Appuyez sur le bargraphe rouge de la fenêtre de menu pour accéder aux messages. Reportez-vous à la section 9.2 « Messages » pour lire la description de ce menu.

REMARQUE : la détection de certaines alarmes peut être activée/désactivée. Reportez-vous à la section 8.7 « ISM / Alarme capteur ».

REMARQUE : les alarmes provoquées par un dépassement de la limite d'une consigne ou de la plage de valeurs admises (CHEMIN D'ACCÈS : ACONFIG\Set Points ; voir aussi la section 8.4 « Valeurs de consigne ») seront aussi signalées à l'écran et enregistrées dans le menu

« Messages » (CHEMIN D'ACCÈS: 尙\ISM\Messages ; voir aussi la section 9.2 « Messages »).

14 Références de commande

14.1 Aperçu du transmetteur

Boîtier en polycarbonate (PC)

Transmetteur	Réf.	
	Procédé	Water
M800 1 voie	30 026 633	_
M800 2 voies	52 121 813	58 000 802
M800 4 voies	52 121 853	58 000 804

Boîtier en acier inoxydable

Transmetteur	Réf.
	Procédé
M800 1 voie	30 024 551
M800 2 voies	30 024 552
M800 4 voies	30 024 553

14.2 Accessoires et pièces détachées

Pour plus d'informations sur les autres accessoires et pièces détachées proposés, contactez votre bureau de vente ou votre représentant local Mettler-Toledo.

Description	Réf. commande
Kit de montage sur conduite pour modèles 1/2DIN (boîtier en PC et en acier inoxydable)	52 500 212
Kit de montage sur panneau pour modèles 1/2DIN (boîtier en PC)	52 500 213
Kit de montage mural pour modèles 1/2 DIN (boîtier en PC et en acier inoxydable)	30 300 482
Auvent de protection	300 733 28

15 Caractéristiques techniques

15.1 Caractéristiques générales

Pour en savoir plus sur les caractéristiques techniques des sondes ISM, consultez le manuel de la sonde.

Caractéristiques de conductivité/résistivité des sondes Cond2e/Cond4e	
Gamme de conductivité	 Sonde 2 électrodes : 0,02 à 2 000 μS/cm (500 Ω x cm à 50 MΩ x cm) Sonde 4 électrodes : 0,01 à 650 mS/cm (1,54 Ω x cm à 0,1 MΩ x cm)
Plage d'affichage pour sonde à 2 électrodes	0 à 40 000 mS/cm (25 Ω x cm à 100 MΩ x cm)
Plage d'affichage pour sonde à 4 électrodes	0,01 à 650 mS/cm (1,54 Ω x cm à 0,1 MΩ x cm)
Constantes de cellule	0,01/0,1/10
Courbes de concentration chimique	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Plages des solides totaux dissous	NaCl, CaCO ₃
Distance maximale de la sonde	 ISM : 80 m Analogique : 61 m ; 15 m avec sondes à 4 électrodes
Précision Cond/Rés	\pm 0,5 % de la lecture ou 0,25 Ω, suivant la valeur la plus élevée, jusqu'à 10 MΩ-cm
Répétabilité Cond/Rés	\pm 0,25 % de la mesure ou 0,25 Ω, selon la valeur la plus élevée
Résolution Cond/Rés	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Entrée température	Pt1000/Pt100/NTC22K
Gamme de mesure de température	De -40 à +200 °C
Résolution de température	Auto/0,001/0,01/0,1/1 K (peut être sélectionnée)
Précision de la température	\pm 0,25 K dans la plage de -30 à $+150$ °C \pm 0,50 K en extérieur

Caractéristiques de pH	
Gamme de pH	-2,00 à 16,00 pH
Distance maximale de la sonde	– ISM : 80 m
	 Analogique : 10 à 20 m selon la sonde
Résolution pH	Auto/0,01/0,1/1 (peut être sélectionnée)
Gamme mV	–1500 à 1500 mV
Résolution mV	Auto/0,01/0,1/1 mV
Précision mV	±1 mV
Gamme de mesure de température	−30 °C à 130 °C
Résolution de température	Auto/0,001/0,01/0,1/1 K (peut être sélectionnée)
Précision de la température	±0,25 K

Jeux de tampons existants

Tampons standard

Tampons MT -9, tampons MT -10, tampons techniques NIST, Tampons standard NIST (DIN 19266 : 2000–01), tampons JIS Z 8802, tampons Hach, tampons CIBA (94), tampons Merck Titrisols-Reidel Fixanals, tampons WTW

Tampons pour électrodes de pH à double membrane (pH/pNa)

Tampons pH/pNa Mettler (Na+ 3,9M)

Caractéristiques des sondes à oxygène ampérométriques		
Gamme de courant	0 à -7000 nA	
Résolution Courant	6 pA	
Longueur max. du câble de sonde	 ISM : 80 m Analogique : 20 m 	
Gamme de concentration d'O ₂ dissous	0 ppb (μg/l) à 50,00 ppm (mg/l)	
Gamme de saturation d'O ₂ dissous	0 à 500 % d'air	
Gamme de concentration d'O ₂ gazeux	0 à 9 999 ppm d'O ₂ gazeux	
Gamme de saturation d'O ₂ gazeux	0 à 100 % d'O ₂ gazeux	
Résolution	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)	
Gamme de mesure de température	−30 à 150 °C	
Résolution de température	Auto/0,001/0,01/0,1/1 K (peut être sélectionnée)	
Précision de la température	±0,25 K dans la plage -10/+80 °C	
Tension de polarisation	-1 000 à 0 mV	
Entrée température	NTC 22 kΩ, Pt1000	
Compensation de température	Automatique	
Étalonnage	 Étalonnage en 1 point (pente ou décalage) Étalonnage procédé (pente ou décalage) 	

Caractéristiques techniques des sondes optiques d'oxygène	
Distance maximale de la sonde	50 m
Gamme de concentration d'O2 dis-	
sous	
Gamme de saturation d'O ₂ dissous	0 à 500 % d'air, 0 à 100 % d'O ₂
Résolution	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)
Gamme de mesure de température	–30 à 150 °C
Résolution de température	Auto/0,001/0,01/0,1/1 K (peut être sélectionnée)

Caractéristiques techniques des sondes de turbidité	
Source de lumière	Diode électroluminescente (LED), fréquence d'émission 880 nm
Gamme de mesure	 5 à 4 000 FTU (unités de turbidité formazine) et 0 à 30 g/l de solides en suspension avec les sondes InPro 8200 10 à 4 000 FTU et 0 à 250 g/l de solides en suspension avec les sondes InPro 8050 et InPro 8100
Unités de mesure sélectionnables	FTU, NTU, EBC, g/L, mg/L, %, ppm, Densité Optique
Jeux de paramètres	Trois jeux de paramètres différents (A, B, C) peuvent être mémorisés et récupérés par le menu du logiciel ou par un accès à distance via les entrées numériques.
Diagnostics de la sonde	Source de lumière (signal de référence interne = 0)
Étalonnage	 Étalonnage manuel (Modifier) : les valeurs de décalage et de gain de la sonde peuvent être saisies directement Étalonnage procédé : étalonnage d'échantillonnage en un point (décalage ou pente : sélectionnable par l'utilisateur) Étalonnage multipoint (décroissant) : étalonnage automatique en 2, 3, 4 ou 5 points (le décalage et le gain seront ajustés automatiquement) Étalonnage in situ (croissant) : étalonnage automatique en 2, 3, 4 ou 5 points

Caractéristiques techniques des sondes de CO ₂ dissous		
	0 à 5000 mg/l	
	0 à 200 %sat	
Gammes de mesure du CO ₂	0 à 1500 mmHg	
	0 à 2000 mbar	
	0 à 2000 hPa	
Distance maximale de la sonde	80 m	
Précision CO ₂	±1 digit	
Résolution CO ₂	Auto/0,001/0,01/0,1/1 (peut être sélectionnée)	
Gamme mV	–1500 à 1500 mV	
Résolution mV	Auto/0,01/0,1/1 mV	
Précision mV	±1 digit	
Domaine de pression totale (TotPres)	0 à 4 000 mbar	
Gamme de mesure de température	−30 à 150 °C	
Résolution de température	Auto/0,001/0,01/0,1/1 K (peut être sélectionnée)	
Précision de la température	± 1 digit	
Répétabilité de la température	±1 digit	
Jeu de tampons existant :		
Tampons MT-9 avec une solution de pH = 7,00 et pH = 9,21 à 25 °C		

 $\overline{\mathbf{r}}$

15.2 Caractéristiques électriques

Alimentation	100 à 240 V c.a. ou 20 à 30 V c.c., 10 W, AWG 16-24, 0,2 mm² à 1,5 mm²
Borne de mise à la terre (modèle en acier inoxydable)	Min. 18 AWG, 0,8 mm ²
Fréquence	50/60 Hz
Signaux de sortie analogique	8 sorties 0/4 à 20 mA, isolation galvanique de l'entrée et de la terre
Erreur de mesure sur les sorties analogiques	$<\pm0,05$ mA sur plage de 0 à 22 mA
Configuration des sorties analogiques	Linéaire, Bilinéaire, Logarithmique, Domaine automatique
Charge	max. 500 Ω
Borniers de raccordement	Bornes cage à ressorts appropriées pour fils AWG 16-24, 0,2 mm ² à 1,5 mm ²
Communication numérique	Port USB, connecteur de type B
Régulateur PID	2 x PID ; longueur d'impulsion, fréquence d'impulsion ou contrôle analogique
Durée du cycle	env. 1 seconde
Entrées numériques	6 (5 pour la version à 2 voies) avec limites de commutation 0 V c.c. à 1 V c.c. au niveau bas et 2,30 V c.c. à 30 V c.c. au niveau haut
Entrées analogiques	Une entrée de 4 à 20 mA, avec isolation galvanique d'autres signaux
Erreur de mesure due à l'entrée analogique	$<\pm0,05$ mA sur plage de 0 à 22 mA
Fusible secteur	2,0 A à action retardée, type FC, non remplaçable
Relais	4 mécaniques SPST à 250 V c.a., 3 A Relais 1 NC, Relais 2 à 4 NO 4 SPDT Type Reed 250 V c.a. ou c.c., 0,5 A (Relais 5 à 8)
Temporisation du relais d'alarme	0-999 s
Interface utilisateur	Écran tactile couleur 5,7" Résolution 320 x 240 pixels 256 couleurs
Longueur de câble max.	80 m pour pH, oxygène amp., Cond4e, ozone 15 m pour O_2 dissous optique, UniCond2e

REMARQUE : ce produit est un 4 fils avec une sortie analogique active 4-20 mA. Veuillez ne pas alimenter les terminaux 3 à 10 du TB1 et les terminaux 1 à 8 du TB3.

15.3 Caractéristiques mécaniques

15.3.1 Modèles en polycarbonate (PC)

Dimensions (boîtier – h x l x p)*	150 x 158 x 170 mm
Encadrement avant – h x l	150 x 158 mm
Profondeur max. – Montage sur panneau	125 mm
Poids	1,6 kg
Matériau	Polycarbonate/PC
Valeur de pénétration	IP 66 (lorsque le couvercle arrière est fixé)

* h = hauteur, l = largeur, p = profondeur

15.3.2 Modèles en acier inoxydable

Dimensions du boîtier (h x l x p)*	163 x 163 x 168 mm
Face avant (h x I)	163 x 163 mm
Poids	2,8 kg
Matériau	Acier inoxydable 304
Indice de protection	IP 66 (lorsque le capot arrière est fixé)

* h = hauteur, l = largeur, p = profondeur

15.4 Caractéristiques environnementales

Température de stockage	−40 à 70 °C
Température ambiante domaine de mesure	−20 à 50 °C
Humidité relative	0 à 95 % sans condensation
Émissions	Conformes à la norme EN 61326 classe A
Environnements dangereux	M800 2 et 4 voies, boîtier en PC uniquement : cFMus Classe I Division 2
	M800 1 voie, boîtier en PC,
	sondes optiques InPro 8100
	ATEX II (1)G [Ex opis Ga] IIA/IIB
Marque CE	Le système de mesure est conforme aux exigences réglementaires des directives CE. METTLER TOLEDO confirme la réussite des tests effectués sur le dispositif en y apposant la marque CE. Pour consulter la déclaration de conformité CE, voir CD fourni.
Classification / Conformité	UL Poîtier en gejer inovudghle - 1 voie 2 voies et 4 voies
	Boîtier en PC : 2 et 4 voies
Altitude, maximum	5 000 m

15.5 Classification Ex

15.5.1 Plaque d'identification du M800, versions 2 et 4 voies

REMARQUE : afin de satisfaire à la certification FM complète, les filetages d'entrée utilisés dans les conduits doivent répondre aux exigences minimales suivantes : classe 1, division 2, groupes A, B, C et D, Type 4X et IP66.

L'installation doit être conforme au National Electrical Code[®], code électrique américain (ANSI/NFPA-70 (NED[®]), et au Canadian Electrical (CE) Code[®], code électrique canadien (CEC, CAN/CSA-C22.1), là où ils s'appliquent.

L'altération et le remplacement des pièces par des composants non autorisés peut compromettre l'utilisation sûre du système.

AVERTISSEMENT : RISQUE D'EXPLOSION. NE PAS RETIRER OU REMPLACER.

AVERTISSEMENT : RISQUE D'EXPLOSION. NE PAS DÉBRANCHER L'ÉQUIPEMENT DANS UN ENVIRONNEMENT INFLAMMABLE OU COMBUSTIBLE.

AVERTISSEMENT : RISQUE D'EXPLOSION. NE PAS DÉBRANCHER LORSQUE LE CIRCUIT EST SOUS TENSION, SAUF S'IL S'AGIT D'UNE ZONE NON DANGEREUSE.

AVERTISSEMENT – RISQUE D'EXPLOSION. NE PAS DÉBRANCHER TANT QUE LE CIRCUIT EST SOUS TENSION, À MOINS QU'IL NE S'AGISSE D'UN EMPLACEMENT NON DANGEREUX.

15.5.2 Plaque d'identification du M800, modèles 1 voie

Certification Ex des sondes optiques InPro 8100 et InPro 8200 uniquement.

16 Garantie

METTLER TOLEDO garantit que ce produit est exempt de tout vice matériel et de conception pour une période d'une (1) année à compter de la date d'achat. Au cours de la période de garantie, si des réparations sont nécessaires et qu'elles ne résultent pas d'une mauvaise utilisation du produit, veuillez le retourner avec les frais de transport prépayés. Les modifications seront effectuées sans frais. Le service client de METTLER TOLEDO déterminera si le problème rencontré par le produit résulte d'une mauvaise utilisation ou d'un vice de fabrication. Les produits qui ne font pas l'objet d'une garantie seront réparés à vos frais sur la base d'un remplacement à l'identique.

La garantie ci-dessus est la garantie exclusive de METTLER TOLEDO et remplace toutes les autres garanties, expresses ou tacites, y compris mais sans s'y limiter, les garanties implicites de qualité marchande et de convenance à une fin particulière. METTLER TOLEDO ne pourra être tenu responsable des dommages, pertes, réclamations, manques à gagner fortuits ou induits, découlant des actes ou omissions de l'acquéreur ou de tiers, que ce soit par négligence ou autre. METTLER TOLEDO est dégagé de toute responsabilité en termes de réclamation, quelle qu'elle soit, qu'elle repose sur un contrat, une garantie, une indemnisation ou un délit (y compris la négligence), se révélant supérieure au prix d'achat du produit.

17 Tableaux de tampons

Les transmetteurs M800 ont la possibilité de reconnaître automatiquement un tampon pH. Les tableaux suivants indiquent les différents tampons reconnus automatiquement.

17.1 Tampons pH standard

17.1.1 Mettler-9

Temp (°C)	pH de solutions tampons				
0	2,03	4,01	7,12	9,52	
5	2,02	4,01	7,09	9,45	
10	2,01	4,00	7,06	9,38	
15	2,00	4,00	7,04	9,32	
20	2,00	4,00	7,02	9,26	
25	2,00	4,01	7,00	9,21	
30	1,99	4,01	6,99	9,16	
35	1,99	4,02	6,98	9,11	
40	1,98	4,03	6,97	9,06	
45	1,98	4,04	6,97	9,03	
50	1,98	4,06	6,97	8,99	
55	1,98	4,08	6,98	8,96	
60	1,98	4,10	6,98	8,93	
65	1,98	4,13	6,99	8,90	
70	1,99	4,16	7,00	8,88	
75	1,99	4,19	7,02	8,85	
80	2,00	4,22	7,04	8,83	
85	2,00	4,26	7,06	8,81	
90	2,00	4,30	7,09	8,79	
95	2,00	4,35	7,12	8,77	

Temp (°C)	pH de solutions tampons				
0	2,03	4,01	7,12	10,65	
5	2,02	4,01	7,09	10,52	
10	2,01	4,00	7,06	10,39	
15	2,00	4,00	7,04	10,26	
20	2,00	4,00	7,02	10,13	
25	2,00	4,01	7,00	10,00	
30	1,99	4,01	6,99	9,87	
35	1,99	4,02	6,98	9,74	
40	1,98	4,03	6,97	9,61	
45	1,98	4,04	6,97	9,48	
50	1,98	4,06	6,97	9,35	
55	1,98	4,08	6,98		
60	1,98	4,10	6,98		
65	1,99	4,13	6,99		
70	1,98	4,16	7,00		
75	1,99	4,19	7,02		
80	2,00	4,22	7,04		
85	2,00	4,26	7,06		
90	2,00	4,30	7,09		
95	2,00	4,35	7,12		

17.1.2 Mettler-10

17.1.3 Tampons techniques NIST

Temp (°C)	pH de solutions tampons				
0	1,67	4,00	7,115	10,32	13,42
5	1,67	4,00	7,085	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,675	4,00	7,015	10,07	12,64
25	1,68	4,005	7,00	10,01	12,46
30	1,68	4,015	6,985	9,97	12,30
35	1,69	4,025	6,98	9,93	12,13
40	1,69	4,03	6,975	9,89	11,99
45	1,70	4,045	6,975	9,86	11,84
50	1,705	4,06	6,97	9,83	11,71
55	1,715	4,075	6,97		11,57
60	1,72	4,085	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,765	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,805	4,23	7,11		

Temp (°C)	pH de solutions tampons				
0					
5	1,668	4,004	6,950	9,392	
10	1,670	4,001	6,922	9,331	
15	1,672	4,001	6,900	9,277	
20	1,676	4,003	6,880	9,228	
25	1,680	4,008	6,865	9,184	
30	1,685	4,015	6,853	9,144	
37	1,694	4,028	6,841	9,095	
40	1,697	4,036	6,837	9,076	
45	1,704	4,049	6,834	9,046	
50	1,712	4,064	6,833	9,018	
55	1,715	4,075	6,834	8,985	
60	1,723	4,091	6,836	8,962	
70	1,743	4,126	6,845	8,921	
80	1,766	4,164	6,859	8,885	
90	1,792	4,205	6,877	8,850	
95	1,806	4,227	6,886	8,833	

17.1.4 Tampons standard NIST (DIN et JIS 19266: 2000–01)

REMARQUE : les valeurs pH(S) des différentes charges des matériaux de référence secondaires sont documentées dans un certificat établi par un laboratoire agréé. Ce certificat est fourni avec le matériau correspondant du tampon. Seules ces valeurs pH(S) doivent être utilisées comme valeurs standard pour les matériaux de tampons de référence secondaires.

En conséquence, cette valeur standard n'inclut pas de tableau avec des valeurs du pH standard pour l'application pratique. Le tableau ci-dessus fournit des exemples de valeurs pH(PS) à titre d'information uniquement.

17.1.5 Tampons Hach

Valeurs de tampons jusqu'à 60 °C tel que spécifié par Bergmann & Beving Process AB.

Temp (°C)	pH de solutions tampons				
0	4,00	7,14	10,30		
5	4,00	60	10,23		
10	4,00	7,04	10,11		
15	4,00	7,04	10,11		
20	4,00	7,02	10,05		
25	4,01	7,00	10,00		
30	4,01	6,99	9,96		
35	4,02	6,98	9,92		
40	4,03	6,98	9,88		
45	4,05	6,98	9,85		
50	4,06	6,98	9,82		
55	4,07	6,98	9,79		
60	4,09	6,99	9,76		

Temp (°C)	pH de solutions tampons				
0	2,04	4,00	7,10	10,30	
5	2,09	4,02	7,08	10,21	
10	2,07	4,00	7,05	10,14	
15	2,08	4,00	7,02	10,06	
20	2,09	4,01	6,98	9,99	
25	2,08	4,02	6,98	9,95	
30	2,06	4,00	6,96	9,89	
35	2,06	4,01	6,95	9,85	
40	2,07	4,02	6,94	9,81	
45	2,06	4,03	6,93	9,77	
50	2,06	4,04	6,93	9,73	
55	2,05	4,05	6,91	9,68	
60	2,08	4,10	6,93	9,66	
65	2,07*	4,10*	6,92*	9,61*	
70	2,07	4,11	6,92	9,57	
75	2,04*	4,13*	6,92*	9,54*	
80	2,02	4,15	6,93	9,52	
85	2,03*	4,17*	6,95*	9,47*	
90	2,04	4,20	6,97	9,43	
95	2,05*	4,22*	6,99*	9,38*	

17.1.6 Tampons Ciba (94)

*Extrapolé

17.1.7 Merck Titrisole, Riedel-de-Haën Fixanale

Temp (°C)	p (°C) pH de solutions tampons					
0	2,01	4,05	7,13	9,24	12,58	
5	2,01	4,05	7,07	9,16	12,41	
10	2,01	4,02	7,05	9,11	12,26	
15	2,00	4,01	7,02	9,05	12,10	
20	2,00	4,00	7,00	9,00	12,00	
25	2,00	4,01	6,98	8,95	11,88	
30	2,00	4,01	6,98	8,91	11,72	
35	2,00	4,01	6,96	8,88	11,67	
40	2,00	4,01	6,95	8,85	11,54	
45	2,00	4,01	6,95	8,82	11,44	
50	2,00	4,00	6,95	8,79	11,33	
55	2,00	4,00	6,95	8,76	11,19	
60	2,00	4,00	6,96	8,73	11,04	
65	2,00	4,00	6,96	8,72	10,97	
70	2,01	4,00	6,96	8,70	10,90	
75	2,01	4,00	6,96	8,68	10,80	
80	2,01	4,00	6,97	8,66	10,70	
85	2,01	4,00	6,98	8,65	10,59	
90	2,01	4,00	7,00	8,64	10,48	
95	2,01	4,00	7,02	8,64	10,37	

Temp (°C)	pH de solut	pH de solutions tampons					
0	2,03	4,01	7,12	10,65			
5	2,02	4,01	7,09	10,52			
10	2,01	4,00	7,06	10,39			
15	2,00	4,00	7,04	10,26			
20	2,00	4,00	7,02	10,13			
25	2,00	4,01	7,00	10,00			
30	1,99	4,01	6,99	9,87			
35	1,99	4,02	6,98	9,74			
40	1,98	4,03	6,97	9,61			
45	1,98	4,04	6,97	9,48			
50	1,98	4,06	6,97	9,35			
55	1,98	4,08	6,98				
60	1,98	4,10	6,98				
65	1,99	4,13	6,99				
70		4,16	7,00				
75		4,19	7,02				
80		4,22	7,04				
85		4,26	7,06				
90		4,30	7,09				
95		4,35	7,12				

17.1.8 Tampons WTW

17.1.9 Tampons JIS Z 8802

Temp (°C)	pH de solutions ta	mpons		
0	1,666	4,003	6,984	9,464
5	1,668	3,999	6,951	9,395
10	1,670	3,998	6,923	9,332
15	1,672	3,999	6,900	9,276
20	1,675	4,002	6,881	9,225
25	1,679	4,008	6,865	9,180
30	1,683	4,015	6,853	9,139
35	1,688	4,024	6,844	9,102
38	1,691	4,030	6,840	9,081
40	1,694	4,035	6,838	9,068
45	1,700	4,047	6,834	9,038
50	1,707	4,060	6,833	9,011
55	1,715	4,075	6,834	8,985
60	1,723	4,091	6,836	8,962
70	1,743	4,126	6,845	8,921
80	1,766	4,164	6,859	8,885
90	1,792	4,205	6,877	8,850
95	1,806	4,227	6,886	8,833

17.2 Tampons pour électrode de pH à double membrane

17.2.1 Tampons pH/pNa Mettler (Na+ 3,9M)

Temp (°C)	pH de solutions tampons				
0	1,98	3,99	7,01	9,51	
5	1,98	3,99	7,00	9,43	
10	1,99	3,99	7,00	9,36	
15	1,99	3,99	6,99	9,30	
20	1,99	4,00	7,00	9,25	
25	2,00	4,01	7,00	9,21	
30	2,00	4,02	7,01	9,18	
35	2,01	4,04	7,01	9,15	
40	2,01	4,05	7,02	9,12	
45	2,02	4,07	7,03	9,11	
50	2,02	4,09	7,04	9,10	

Pour obtenir les adresses des organisations commerciales de METTLER TOLEDO, rendez-vous sur la page : www.mt.com/contacts

ISM, UniCond et InPro sont des marques déposées du groupe METTLER TOLEDO.

www.mt.com/pro

Pour plus d'informations

/ISO 14001 9001 certifie

Management System certified according to ISO 9001/ISO 14001

Groupe METTLER TOLEDO Process Analytics Contact local : www.mt.com/contacts

Sous réserve de modifications techniques. © 06/2023 METTLER TOLEDO. Tous droits réservés. Imprimé en Suisse. 30 307 504 E